
AD-A267 901

Teaching A Computer
Simulation Course With

Ada rtT C
bAUG 1i 19930

Final Technical Report
Defense Advanced Research Projects Agency

Grant # MDA972-92-J-1019
CLEARED

FOR OPEN PUBLICATION

.-.'u1'1 11993 4

CiOECTOHATE FOR MEEDC• OF INFORMATIA
ANDO SECUR!IY REVIEW (OASO.PA)

Edward L. Lamie NEPAroMENF

California State University, Stanislaus, - *

May 1993)73, 1-T o7

""93 93-15105
. ,, ,.-

Teaching A Computer
Simulation Course With

I Ada
I

I Final Technical Report
I Defense Advanced Research Projects Agency

Grant # MDA972-92-J-1019

I

I Edward L. Lamie
California State University, Stanislaus

May 1993

II

I 93 5 11 0

Ovrve

I7 lo o

Ii 1,3 0
IT1
Uu

DI 1U
Dit S
AI

I
I
I Overview

!

Introduction

The purpose of this project was to develop a nucleus of routines, along with

accompanying documentation, for use in software engineering courses or courses in

discrete-event system simulation. The system is called SIMPACK, after the main

package that contains most of the simulation modules.

SIMPACK was developed on an MS DOS computer using Meridian Ada,

version 4.1.1. In addition to documentation, a floppy disk is included which contains

all the Ada routines used, a compiled version of the system, and a template system

to create data files for use by SIMPACK.

II
I Documentation

There are four major components to the documentation. The first part is

titled Course Notes. This part is oriented toward use of the system in a computer

simulation course. SIMPACK can be used as a stand-alone system capable of

simulating a variety of models. The course notes contain an introduction to

simulation and model building, an introduction to SIMPACK usage, and a

discussion of 10 case studies. The case studies range in complexity from a simple

single-queue, single-server system to complex systems involving branching, merging,

and feedback loops. Transparency masters are also included which contain

descriptions of the 10 case studies.

Overview Page 0-2

The second part of the documentation is titled User Manual. The user

manual contains an introduction to SIMPACK, definitions of terms and concepts

used, discussion on how to develop models and how to prepare a simulation data

file for use by SIMPACK. There is also a section on how to interpret the results

produced by SIMPACK.

The third part of the documentation is titled System Manual. This manual

contains technical information about SIMPACK. The purpose of this manual is to

provide enough information so that modifications and enhancements could be

made to the system. The manual contains discussion about specific Ada routines as

well as data storage, system architecture, output, and simulation termination. There

are several appendixes which contain information about the statistics gathered,

known bugs, and suggested upgrades.

The fourth part of the documentation are source listings of the Ada routines

used in this project. There is a main driver called SIMULATE.ADA, and two

packages called SIMPACK.ADA and RANDOM.ADA.

Files on Disk

There is a disk included with this package which contains all the files needed

to use or modify SIMPACK. Following is a list of all the files on this disk, as well as

a brief comment for each file.

File Comment
SIMULATE.ADA main driver
SIMPACK.ADA package containing most simulation routines
RANDOM.ADA ackage containing random number generators
BUILD.BAT batch file containing compilation sequence
SIMULATE.EXE compiled, ready-to-use version of SIMPACK
SIM.DAT sample data file for use by SIMPACK
GO.BAT batch file for data file preparation
RUN.EXE file used for data file preparation
SIMSETUP.SKW file used for data file preparation

Overview Page 0-3

I
I

Computer Simulation

SIMPACK may be used without modification as a lab component in a

I computer simulation course. Many introductory features of discrete-event systems

simulation may be explored using this system. A compiled version of the software is

3 provided, so the system is usable in its present form, without alteration. No special

setup is required, although the system could be recompiled to take advantage of

features such as a numeric co-processor. The 10 case studies in the Course Notes

provide a variety of examples that illustrate the capability of SIMPACK. These case

studies can be modified for other problem assignments. Transparency masters are

included at the end of the Course Notes that contain all the case studies and all the

figures. The User Manual provides detailed information on how to use SIMPACK.

Software Engineering

SIMPACK may be used in a maintenance-oriented software engineering

course. The system is complete and is operational, but there are many features that

could be added. SIMPACK could be used in conjunction with one of the software

engineering textbooks currently available. Ada source code is provided, and the

System Manual contains a description of many internal features of the system that

are essential in a maintenance environment. A desirable feature that could be

incorporated into SIMPACK is another type of probability distribution, rather than

being limited to uniform and exponential distributions. For example, a normal

distribution or a user-defined discrete distribution would be useful additions.

Providing a more user-friendly approach is certainly another good feature.

Overview Page 0-4

i I II I I I II I I I i i ,

I
I
I
I
I

- Course Notes

I

I

I
I
i

I .i a i e i] I•l

I
I

I Table of Contents

I

n Preface ... C -iii

Chapter 1 Systems, Models, and Simulation C-1
Introduction .. C-1
System s .. C -2
M odels ... C -2
Computer Simulation ... C-3

Chapter 2 General Procedures .. C-4
Introduction ... C -4
E ntities .. C -4
Events ... C-5

* Simulation Results ... C-6

Chapter 3 Introduction to SIMPACK .. C-7
Introduction ... C-7
D efinitions .. C -7
Case Study # 1, Building the ATM Model C-8

nential Probability Distribution C-10
case Study # 2, The ATM Model Revisited C-11
Case Study # 3, Modeling Server Capacities C-13

Chapter 4 Multiple Servers and Branching C-15
Introduction .. C-15
Case Study # 4, Servers in Tandem C-15
Case Study # 5, Probabilistic Branching C-16
Case Study # 6, Merging Requestors ... C-19

Chapter 5 Complex Branching and Feedback Loops C-21
Introduction C-21
Case Study # 7, Complex Branching .. C-21
Case Study # 8, Complex Branching and Merging C-23

Case Study # 9, Using a Feedback Loop C-25
Case Study # 10, Complex Structures .. C-26

Appendix A, Bibliography ... C-29
Appendix B, Sample Syllabus ... C-32
Appendix C, Projects and Assignments ... C-33
Appendix D Transperency Masters .. C-34

I
I Course Notes Page C-ii

I
I

PrefaceI
I

Computer simulation is a popular topic at many colleges and universities. One or
more courses dealing with computer simulation are taught at many institutions. The
popularity of this subject is due to its usefulness in a variety of fields including
business, computer science, and engineering. Computer simulation is an effective
planning and prototyping tool.

These course notes contain an introduction to the principles of model
building and computer simulation. Concepts related to discrete-event systems
simulation are emphasized and an Ada-based simulation tool called SIMPACK is
used. SIMPACK was developed for use on a variety of computers ranging from
mainframes to microcomputers. It is easy to learn, and it is easy to use.

SIMPACK is a simulation tool designed specifically for model building and
simulation. It is based on the programming language Ada, so it may be modified or
extended as needed. It contains many key features essential for computer
simulation, such as generation of random numbers, management of events,
collection of statistics, and generation of standard output. SIMPACK is available
for immediate use. The beginning SIMPACK user is freed from programming
details and is able to concentrate on model building and simulation. After gaining
some experience, the SIMPACK user may add features in an incremental fashion.

Two manuals are included with this package. The first is a user manual,
which is intended to assist the user with the current version of SIMPACK. The
second is a system manual which is intended to assist the Ada programmer in
understanding the internal details of SIMPACK. This will be useful in modifying or
adding features.

The approach used in these course notes is to discuss modeling and
simulation concepts in a systematic and complete manner. Topics are introduced in
a logical, but gradual sequence. The order of concepts follows a "building block"
approach, where fundamental features are presented early and used throughout
these course notes. Ten case studies are used to develop sound modeiing and
simulation skills. Each case study follows a consistent pattern and incorporates
model definition, data file contents, sample output, and discussion of the
simulation.

Introductory simulation and modeling concepts are discussed in chapters 1
and 2. Basic terminology and model building concepts are emphasized in these
chapters. Chapter 3 contains an introduction to SIMPACK and Case Studies one
through three are presented. These case studies cover simple systems and introduce
concepts that are used later. For example, uniform and exponential probability
distributions are discussed in this chapter. Chapter 4 contains case studies four
through six. These case studies explore models involving servers in tandem,
probabilistic branching, and requestor merging. Chapter 5, the last chapter,
contains case studies seven through ten. These case studies investigate systems with
multiple branching and merging, feedback loops, and complex structures.

C

U Course Notes Page C-ill

Chapter 1
Systems, Models, and Simulation

Introduction

The principal goal of these course notes is to develop techniques to model systems
and to study the behavior of these models with the SIMPACK simulation tool. The
types of systems that we will consider in these course notes are specified later in this
chapter.

Fundamental concepts and terminology pertaining to modeling and
simulation are discussed in this chapter. The section titled "Systems" defines how
we use the terms systems and system components in these course notes. The section
titled "Models" describes common types of models, emphasizing the type of models
that we will use. The section titled "Simulation" describes the process of model
building and how we study the behavior of models with the computer.

There are many types of systems that can be modeled and many kinds of
simulation techniques. This chapter defines the types of systems, models, and
simulation techniques that we consider in these course notes.

A.T..
Customers arrive and
wait In the queue until Customer leaves
the A.T..L Is available the system

Customer
receives
service

Figure 1.1 An Example of an ATM System

Course Notes Page C-I

n
I
* Systems

The term system is usc,- in a variety of contexts. We will use the term system to refer
to a collection of componcr, v.s that are functionally related, and where changes
occur in these functiona! .c dtionships over time. This is a general definition of the
term, but it is sufficient to ,aescribe the systems that we wish to model and simulate.

The components of a system are temporary entities and permanent entities. As
the .iime suggests, a permanent entity exists as long as the system itself does.
However, a temporary entity may have a much shorter existence. Each entity may
have several associated attributes (or values). Events (or activities) cause changes to
the entities and the corresponding attributes.

An example of such a system is the automatic teller machine (ATM) system
in Figure 1.1. In this system, the ATM is represented as a permanent entity and the
customers who use the machine are represented as temporary entities. Two events
in this system are the arrival of customers and the use of the ATM by a customer.
The ATM can accommodate one customer at a time, so when a customer arrives, he
or she will join the rear of the queue (waiting line). The customer leaves the system
after using the ATM.

I
Models

We are principally interested in developing models of systems that can be simulated
on a computer. The activities or events of such systems are usually either
deterministic or stochastic in nature. An event is deterministic if we are able to
predict its behavior exactly when we have the necessary information about that
event. An event is stochastic if its behavior varies randomly over several possible
outcomes. For example, calculating the value of an investment with a fixed interest
rate is a deterministic activity. The arrival of customers at a restaurant is an example
of a stochastic event because of the apparent random arrival times. We cannot
predict with certainty when the next customer will arrive. We will emphasize
stochastic systems in these course notes because these systems are used in a wide
variety of applications.

Systems are further classified as either continuous or discrete. Event changes
occur gradually (or continuously) over time in a continuous system. Models of
continuous systems often involve the use and solution of differential equations.
However, event changes occur at specific points in time in a discrete system. The
ATM system in Figure 1.1 is an example of a discrete system because all the events
occur at specific times. The arrival of a customer does not occur gradually, it
happens at a discrete point in time. Similarly, the beginning and completion of
ATM use occurs at a specific time.

Consequently, the types of systems that we will model in these course notes
are stochastic, discrete event systems. Most of these systems involve queues, which
we will model as well. These characteristics are typical of many business and

n engineering systems.

I
U Course Notes Page C-2

Computer Simulation

Simulation is the process of creating a model and observing the behavior of that
model as it is subjected to various events and activities. A model can take on many
forms, ranging from physical representations to computer representations.

Computer simulation is a simulation process, in which the entities of the
model are implemented on a computer and the computer is used to imitate the
events of the model. A major advantage in using computer simulation is that
entities and events can be easily changed. The revised model can be simulated and
its behavior analyzed. Consequently, models of present systems can be studied, as
well as models of future or proposed systems.

Determining the correctness of a simulation is often a problem. Simulation
is not an exact science because there are several simplifications, assumptions, and
estimates involved with the process. First, there is the construction of the model
itself. The validity of the model is dependent on the skill of the model builder.
S ýimmtimes the model builder must make assumptions about the system. For
complex systems, the model builder may have to simplify the system in order to
represent it. If these steps are not performed correctly, the model is invalid. We
must also verify that the computer representation of the model is correct. Even if
the model is valid, the model must be correctly impiemented on the computer in
order for the simulation to be meaningful.

Course Notes Page C-3

I
I
* Chapter 2

General ProceduresI
Introduction

The first step in model building is to identify all the components of the system we
are analyzing. We need to determine all the permanent and temporary entities, and
their attributes. We also need to recognize all the events of the system and how
these events affect the entities.

Drawin a picture or a diagram of the system in question may help clarify theI situation. ongsider the system depicted in Figure 2.1. This system is essentially the
same as the ATM system appearing in Figure 1.1. This system is classified as a
single-queue, single-server system. There is one entity that gives service to one
customer at a time (the single server) and one waiting line for the customers in front
of the server (the single queue).

I
Entities

When given a system, one of the first steps in model building is finding all the
permanent entities and all the temporary entities. Consider the system of Figure
2.1. Which entities are part of the system as long as the system remains in

I
One customer
served of a time

Custorn WleavesI wverthe system

Customers arrive and
waot In a queue for
service

I
I
3 Figure 2.1 A Single-Queue, Single-Server System

Course Notes Page C-4

existence? There is one permanent entity in this system, the single server. However,

there are arbitrarily many temporary entities (the customers) in this system.
Customers enter the system and remain until they receive service.

Determining the permanent and temporary entities of a system is usually not
a difficult task. Determining the attributes of these entities may not be as
straightforward. An attribute is a value or a property of an entity. Attributes add
information about entities that is necessary in the simulation process. Because of
the simplicity of the system in Figure 2.1, none of the entities have attributes.

Events

Properly identifying the events of a system is the next major step in model building.
Events usually involve entities and represent the changes that occur over time in a
system. In the system depicted by Figure 2.1, there are two types of events. The
events in this system are (1) the arrival of another customer and (2) the service given
by the server to the customer. We usually need more information to properly
describe these events. In particular, we need to know how often a customer arrives
in the system and how long it takes the server to deliver the service. Figure 2.2 is
another view of this system, but with this additional information.

According to Figure 2.2, a customer arrives every five to 15 minutes. The
arrival time of entities into a system is called the interarrival time or MAT for short.
The ATM serves one customer every four to 10 minutes. The service time of a
server in a system is called the average service time orAST for short. The queue is
represented in this figure as a line forming in front of the ATM. We assume that
the queue is organized in afirst-in, first-out (FIFO) fashion. Each customer that
arrives joins the rear of the queue and waits for his or her turn with the ATM.

The ATM serves each
customer In an average
time of 4 to 10 minuhs

op A.T.M. 1
A customer arrives every A customer leaves the
5 to 15 minutes and joins system when finished
the queue in front of theATM with the ATM

Figure 2.2 Another View of the ATM System

Course Notes Page C-5

I

The only information missing in Fipure 2.2 is how long the model should be
simulated. This could be handled by specifying a certain amount of time to simulate
or by indicating the number of customers to be processed. This is an element of
information that is required to implement the model on a computer.

Simulation Results

3 The chief reason for simulating a system is to answer questions or resolve concerns
about the behavior of that system. For example, in the ATM system, the following
questions could be asked about the queue that forms in front of the ATM.

a. What is the average waiting time in the queue?
b. What was the maximum number of customers in the queue?
c. How many customers spent zero waiting time in the queue?
d. How many customers were in the queue when stimulation stopped?
e. What was the average number of customers in the queue during

simulation?

The following questions could be asked about the ATM itself.
a. How many customers were served?
b. What was the average time to serve each customer?

m c. How busy was the ATM?

Answers to each of these questions can be obtained as a result of developing a
model for this system and simulating the behavior of that model on the computer.
In the next chapter, we develop a model for the ATM and show the results of
simulating the behavior of this model using SIMPACK.

C
I
I
I
I
I
I
U
m Course Notes Page C-6

I
I
3 Chapter 3

Introduction to SIMPACKI
I
3 Introduction

The User Manual contains the details necessary for installing and running
SIMPACK. The basic simulation and modeling concepts used by SIMPACK are
discus&,d in this chapter. We then create a model of the ATM system discussed in
the previous chapter, and simulate the behavior of that model using SIMPACK.

I
Definitions

I Following are definitions of several key concepts that we will use when building
models with SIMPACK.

Requestor: This is a temporary entity that arrives in the system every so often
(arrival time is a random number based on information supplied by
you), and waits for service by a server for some amount of time.
When the server is available, the requestor spends some amount oftime being processed, then either exits the system, or continues on towait for another server.

Server: This is a permanent entity that requestors wait for. A server holds the
requestor for some amount of time to do some sort of processing,
then releases the requestor. The requestor can then leave the system,
or branch to another server for other processing.

Queue: A queue (or waiting line) forms in front of a server if that server is
busy with another requestor.

Time: Time units can represent any time unit that you wish, but you must be
consistent in your units when specifying arrival times, service times,
lengths of simulations, etc. Units can be seconds, milliseconds,
nanoseconds, or even days, weeks, years, or centuries (time units are
arbitrary).

I.A.T.: Inter-arrival time: This is the time interval at which requestors arrive
in the system. The actual arrival times are random numbers based on
the following information:
If you choose a uniform probability distribution, you must supply the
minimum and maximum arrival time intervals (for example, a
requestor arrives every 3 to 5 minutes).

U Course Notes Page C-7

If you choose an exponential probability distribution, you must supply
the mean arrival time (for example, a requestor arrives every 10
seconds, on the average).

A.S.T.: Average service time: This is the length of time that a server holds a
requestor for processing. The actual service times are random
numbers based on the following information:
If you choose a uniform probability distribution, you must supply the
minimum and maximum service times (for example, this server spends
between 5 and 15 milliseconds processing each request).
If you choose an exponential probability distribution, you must supply
the mean service time (for example, this server spends 62 minutes
processing each requestor, on the average).

Capacity: This is the number of requestors that a server can process at the same
time.

We will now use these terms in defining the model for the ATM system in Chapter
2.

Case Study # 1 - Building the ATM Model

Figure 3.1 contains a description of a single-queue, single-server system which we
use to represent an ATM system. The requestors represent customers with an IAT
of eight to 10 time units. This is a uniform distribution which means that the time
between customer arrivals is eight, nine, or 10 time units (each of these times is
equally likely). The server represents the ATM with an AST of four to six time
units. This is also a uniform distribution which means that the time to process each

Stop simulation at time 1000

LA.T.
RX Server

8 - 10 time units Terminate

Requestors
Arrive A.S.T.

4 - 6 time units

Figure 3.1 Case Study 1, the ATM Model

Course Notes Page C-8

customer is four, five, or six time units. The simulation will stop when the
simulation clock reaches time 1000 (the clock starts at time 0).

Note that we must specify all values as integers when using SIMPACK. The
primary reason for this numeric restriction is to improve the execution speed of the
simulation process.

Consult the user manual for details of using SIMPACK. Here is a brief
overview. First, create a data file called SIM.DAT by using the template that is
provided. The purpose of this data file is to configure the model to be simulated.
The template would be completed for this problem as follows.

Hetp:
OAt> H S I N U L A T I 0 N S E T U P
Quit:OAtt> Q E=l• Mean/

I.A.T. UQ form Min max Stop at time:

EIJUI1 Iiý] Stop * Req.:
Expon / A.S.T.: # servers next next

Server Uniform Min Max Cap reached server# prob server#

1 U 4 6 1 0

5

After entering data in the above template, press <Alt> D to create the data file
SIM.DAT. Figure 3.2 contains the contents of that file.

3 t 1000
u 8 10
u 4 6 10I
Figure 3.2

Contents of Data File SIM.DAT

I The first line in Figure 3.2 specifies that the simulation will end abruptly at time
1000. The second line specifies the IAT of requestors, i.e., it is a uniform
distribution from eight to 10 time units. The third line contains information about
server number 1 (the ATM). First it specifies the AST of the server, i.e., it is a
uniform distribution from four to six time units. Then the capacity of the server is
specified, i.e., one. This means that the ATM can handle only one customer at a
time. Finally, the value zero indicates that there are no other servers for the
customer to engage. You are not required to use the simulation template to create
file SIM.DAT, which is an ASCII text file. However, doing so may be quite error-

I prone.

U Course Notes Page C-9

Simulation Stopped at Time: 1000
1 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 1 110 4.9 1 0 0.5 53.9

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 110 110 0.0 1 0 0.0

Figure 3.3 Sample Output Produced by SIMPACK

After the SIM.DAT file is prepared, invoke SIMPACK by executing the
executable file SIMULATE.EXE which is provided. When simulation is complete,
standard output is sent to the default output device, or it may be directed to a file
for later use. Figure 3.3 contains a sample of the output produced by SIMPACK for
the ATM problem.

The first line of the output in Figure 3.3 indicates that the simulation
stopped at time 1000. The next line specifies the number of servers in this model,
i.e., one. Information about the server appears next, followed by information about
the queue.

The server had 110 entries, that is, 110 customers used the ATM. The
average time per customer was 4.9 time units (recall that the AST was four to six
time units). There was a maximum of one customer using the ATM at any time
(recall that the capacity of the ATM is one). The current contents of the ATMSthatheh oteATM at thtoim)
when simulation stopped was zero (no customer was using the ATM at that time).
The average contents of the ATM was 0.5 and the utilization of the ATM was 53.9%
(this means that the ATM was busy a little over half the time).

The queue had a total of 110 entries and there were 110 zero entries. This
means that no customer had to wait for the ATM. The average time spent in the
queue by customers was 0.0 and the queue never had more than one customer. The
contents of the queue was zero when simulation stopped, and the average contents
of the queue was zero (recall that waiting time was zero for all customers).I
Exponential Probability Distribution

l The uniform probability distribution was used in Case Study 1. The exponential
probability distribution is also available with SIMPACK. This provides IAT and
AST values that can be close together or far apart. Sometimes this distribution
represents real-life distributions better than the uniform distribution. To use an
exponential distribution, you specify only a mean value. That value is multiplied by
a value returned by the exponential function. Figure 3.4 is a depiction of that
function.

I

l Course Notes Page 0-10

I

Given a mean of eight for either an IAT or an AST, following is a list of
possible values that are returned by multiplying eight by various values of the
exponential function.

0
2
6

11
17
24
36
55

Despite the large spread in this list, the mean of these values will approach eight if a
relatively large sample is used. We will use exponential distributions in the next
Case Study.

1 Case Study # 2 -The ATM Model Revisited

Figure 3.5 contains a description of the ATM model that appeared in the previous
Case Study, but with an exponential IAT and AST.

I

* "9

7-7

6-

* 3-

2-

0
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

Probabft

Figure 3.4 Exponential Distribution

U Course Notes Page C- 1I

Stop simulation at time 1 000

I..T
ow Server

9 time units, Terminate
distributed
exponentially

5 time units,
distributed exponentially

3Figure 3.5 Case Study 2, Model With Exponential Distributions

To run this model, we first need to create the data file SIM.DAT which contains a
-i description of the model. Figure 3.6 shows the contents of that data file.

I
t 1000
e 9
e 5 1 0

Figure 3.6
Contents of Data File SIM.DAT

The first line of this data file specifies that the simulation is to terminate attime 1000. The second line indicates that the IAT of requestors, is distributed
exponentially with a mean of nine. The third line specifies that the AST of server 1 i
exponentially distributed with a mean of five. The capacity of server 1 is one and
there are no servers following it. Figure 3.7 contains the output generated byi SIMPACK for this data file.

Note the differences between this output and the Figure 3.3 output. In this
simulation, there were only 93 entries each an average time of 5.7 per entry. The
sever utilization was 53.0%. Only about half the entries spent no time in queue; the
average time spent in the queue was 5.9 time units. There was a maximum of four
requestors in the queue during simulation, but no requestor was in the queue whenI simulation stopped. The average queue contents was 0.6. The variance between

i Course Notes Page C-12

Simulation Stopped at 'ime: 1000
1 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 1 93 5.7 1 0 0.5 53.0%

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 93 48 5.9 4 0 0.6

Figure 3.7 Sample Output Produced by SIMPACK

this simulation and the previous simulation with uniform distributions is reasonable.
The exponential distribution produces a wide range of IAT and AST values, where
the uniform distribution produces a much smaller range of values.

Case Study # 3 - Modeling Server Capacities

The capacity of each server in the previous model was one. However, servers may
have capacities much greater than one. We can stop simulation based on the
number of requestors that have completed service. In this Case Study, we will
model a system with these features. Figure 3.8 contains a diagram of that system.

Stop simulation when 500 requestors
have received service

LA.T.

16 - 25 time units Terminate

A.S.T.
42 - 53 time units

Figure 3.8 Case Study 3, Server With Capacity of 3

Course Notes Page C-13

The only new features in this model are the server capacity and the method by
which simulation is halted. Instead of specifying a capacity of one, we specify a
capacity of three. We indicate that simulation is to stop when 500 requestors have
received service and left the system (terminated). Figure 3.9 shows the contents of
data file SIM.DAT.

r 500
u 16 25
U 42 53 3 0

Figure 3.9
Contents of File SIM.DAT

The first line in data file SIM.DAT indicates that simulation will halt as a
result of a requestor count, rather than at some designated time. The letter "r" (or
"R") indicates a req~uestor count, whereas the letter "t" (or 'T') indicates a specific
time. The second line indicates that the IAT is a uniform distribution with a low of
16 and a high of 25. The third line shows that the AST is a uniform distribution with
a low of 42 and a high of 53. It also indicates that the capacity of server 1 is three,
and no other servers follow it. Figure 3.10 contains sample output produced by
SIMPACK by using this data file.

Simulation Stopped at Time: 10311

1 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 3 501 47.4 3 2 2.3 76.8

SQUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 501 500 0.0 1 0 0.0

Figure 3.10 Sample Output Produced by SIMPACK

Simulation stopped at time 10311 after the 500th requestor had received
service. Each requestor spent an average of 47.4 time units with the server. The
server had a utilization of 76.8%. No time was spent in the queue; virtually all the
requestors spent zero time waiting.

Course Notes Page C-14

I
I

Chapter 4
Multiple Servers and BranchingI

I
Introduction

I The examples in Chapter 1 were confined to single-server models. Most models had
a capacity of one, although one example illustrated a server with capacity of three.
In this chapter, we will consider systems with several servers and probabilistic
branching.

I Case Study # 4 - Servers in Tandem

In this case study, we consider two servers in tandem. One of the servers has a
uniform distribution and the other server has an exponential distribution. Figure
4.1 contains a description of this system.

I
3 Stop simulation when 500 requestors

have received service

I

SI.A.T.
6 - 18 Term.

A.S.T. A.S.T.34 - 16 8 dist. exp.

I
3 Figure 4.1 Case Study 4, Servers in Tandem

3 Figure 4.2 contains the contents of data file SIM.DAT.

I Course Notes Page C-15

I
I

I
r 500
u 6 18
u 4 16 1 1 2 100
e 8 1 0

I
Figure 4.23 Contents of File SIM.DAT

After running this simulation for 500 time units, the output in Figure 4.3 is
produced.

I
Simulation Stopped at Time: 5959
2 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 1 501 10.3 1 1 0.9 86.0 %
2 1 500 8.1 1 0 0.7 67.8 %

I
QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.

CONTENTS
1 501 194 4.8 3 1 0.6
2 500 265 7.4 6 0 0.7

I Figure 4.3 Output of Case Study 4

I Although the AST of server 2 is less than that of server 1, the maximum contents of
queue 2 is six, while the maximum contents of queue 1 is only three. Queue 2 had
more zero entries than queue 1, and the average time requestors spent in queue 2
was greater than in queue 1. However, the utilization of server 1 was about 86%
while the utilization of server 2 was only about 68%. The explanation for these
differences is that server 2 had an AST with an exponential distribution, while server
1 has an AST with a uniform distribution.

ICase Study # 5 - Probabilistic Branching

We introduce the concept of probabilistic branching in this case study. When a
requestor leaves a server, it can either terminate (leave the system) or branch to

U Course Notes Page C-16

another for additional service. Figure 4.4 contains a depiction of a system with this
type of branching.

I

2

65% Term.

l.A.T. 9 - 13

6 dist. exp.
A.S.T. 35'I

Terminate

It Stop simulation at time 1500

I Figure 4.4 Case Study 5, Probabilistic Branching

I When a requestor has completed service with server 1, it branches to server 2 with
0.65 probability (although we specify probabilities as percentages). We do not
specify a probability that the requestor terminates, because that is the default
action. Figure 4.5 contains the data file for this problem.

I
t 1500

e 12
U 5 15 1 1 2 65
* 9 13 1 0

Figure 4.55 Contents of File SIM.DAT

After running this simulation for 1500 time units, the output in Figure 4.6 is
produced.

I
SCourse Notes Page C-17

U
I

Simultation Stopped at Time: 1500

2 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I
CONTENTS

1 1 133 10.0 1 1 0.9 89.1%

12 1 87 10.8 1 0 0.6 62.7,

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 136 11 30.6 9 2 3.5
2 87 51 2.8 2 0 0.1

Figure 4.6 Output of Case Study 5

I Server 1 should be able to process requestors faster than they arrive, i.e., the IAT is
about 12 and the AST is about 10. However, only 11 requestors spent zero time in
queue 1. Furthermore, queue 1 had a maximum of nine requestors waiting, but only
two were waiting when simulation stopped. One explanation for this situation is
that many requestors were created when simulation started, and the server spentg most of the time trying to catch up.

I2

A.S.T.
25 - 36I.A.T. 4

8 8-15 AST

IA.S.T. / -1
42 - 56 II.T

10 - 153 Figure 4.7 Case Study 6, Merging Requestors

Course Notes Page C-18

Case Study # 6 - Merging Requestors

In this case study, requestors branch to two different servers, then branch to a
common server. Figure 4.7 contains a description of this system. When a requestor
completes service in server 1, it then branches to either server 2 or server 3. When a
requestor finishes service with either server 2 or server 3, it then branches to server
4, then leaves the system. Simulation stops after 200 requestors have received
service. Figure 4.8 contains the contents of the data file.

r 200
u 8 15
u 42 56 5 2 2 22 3 78
U 25 36 2 1 4 100
u 10 15 1 1 4 100
U 8 13 1 0

Figure 4.8
Contents of File SIM.DAT

This simulation stops after 200 requestors have received service. Figure 4.9 contains
the output generated by this simulation.

Simulation Stopped at Time: 2397
4 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /

CONTENTS
1 5 203 50.4 5 4 4.3 85.3%
2 2 50 30.4 2 1 0.6 31.7%
3 1 151 12.7 1 1 0.8 80.1%
4 1 201 10.6 1 1 0.9 87.9 %

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 207 184 0.4 1 0 0.0
2 51 51 0.0 1 0 0.0
3 152 56 6.5 3 0 0.4
4 201 55 5.7 2 1 0.6

Figure 4.9 Output of Case Study 6

Course Notes Page C-19

The utilization of the servers corresponds closely with the average time spent in the
respective queues. Figure 4.10 contains a comparison of the server utilizations for
this problem.

90._ . _

70'

860

50-

_ 40,

30,

020-
S10-

0'
1 2 3 4

Sweve Ntw*

Figure 4.10 Server Utilizations for Case Study 6

Course Notes Page C-20

3 Chapter 5
Complex Branching and Feedback Loops

I

Introduction

In this chapter, we explore models of increasing complexity. Case studies 7 and 8
illustrate 4-way branc ing and cross-branching. Case studies 9 and 10 investigate3 two approaches for feedback loops.

I Case Study # 7 - Complex Branching

In this case study, a requestor is sent to one of four servers after receiving service at
server 1. The capacity of the servers ranges from one to three. When a requestor
finishes server 4, it is sent to either server 6 or 7. Similarly, when a requestor
finishes service at server 5, it is sent to either server 6 or 7, although with differentg probabilities. Figure 5.1 contains an illustration of this model.

3 2D2 - o Terminate

5% A.S.T. 24 - 3615 3

I ... 1 18 1 Terminatea
S/A.S.T. 18 - 26

8 - 16 AL... 38 4 6
A.S.T. 56% F

1 time unit329% A.S.T. 42 -5 AS.T. 10 -14

Stop simulation 5 X 7! ~ ~at time 3000 7, •

oftie 6 A.S.T. 8 - 10
A.S.T. 74 - 88

Figure 5.1 Case Study 7, Complex Branching

C
ICourse Notes Page C-21

1
I

Figure 5.2 contains the contents of the data file for this case study.3
t 3000
U 8 16
U 1 1 1 4 2 15 3 18 4 38 5 29
u 24 36 1 0
u 18 26 1 0
u 42 58 2 2 6 56 7 44
u 74 88 3 2 6 24 7 76
u 10 14 1 03 U 8 10 1 0

Figure 5.2
Contents of File SIM.DAT

Simulation of this model stops at time 3000. Figure 5.3 contains the output

generated by this simulation.

I
Simulation Stopped at Time: 3000
7 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 1 251 1.0 1 0 0.1 8.4 %
2 1 34 30.9 1 0 0.4 35.0%
3 1 53 22.7 1 0 0.4 40.1%
4 2 99 50.8 2 0 1.7 83.8 %
5 3 62 81.4 3 3 1.7 56.1%
6 1 74 12.1 1 0 0.3 29.9 %
7 1 87 8.9 1 0 0.3 25.9 %

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 251 251 0.0 1 0 0.0
2 34 29 1.9 1 0 0.1
3 53 44 2.1 2 0 0.1
4 99 38 19.0 4 0 0.6
5 65 58 1.0 2 0 0.0
6 74 57 1.9 2 0 0.1
7 87 70 1.0 1 0 0.1

3 Figure 5.3 Output Produced by Case Study 7

Course Notes Page C-22

Case Study # 8 - Complex Branching and Merging

Figure 5.4 depicts a model that is considerably more complex than any we have
explored thus far. Only the IAT value for the requestors appears in this figure; the
AST values for the servers appear separately.

65% IT]

i7

277 2-6

I.AT.
27 EI 12

6-10 61 8% Term.

360. I<

--38 202% 1

•F4 E -
5 12-12

33% 6- 14 1

Figure 5.4 Case Study 8, Complex Branching and Merging

Following are the AST values for the servers.
Server A.S.T.

Number (time units)
1 2-6
2 6-8
3 8-12
4 4-6
5 12-16
6 14-18
7 22-26
8 16-18
9 18-20

10 12-14
11 6-8
12 8-10
13 7-9
14 1-3

Course Notes Page C-23

Figure 5.5 contains the contents of the data file for this case study.

r 200
u 6 10
u 2 6 1 3 2 27 3 18 4 55
u 6 8 1 2 5 35 6 65
u 8 12 1 4 7 12 8 30 9 22 10 36
u 4 6 1 3 11 47 12 20 13 33
u 12 16 1 0
u 14 18 1 0
u 22 26 1 0
u 16 18 1 0
u 18 20 1 0
u 12 14 1 0
u 6 8 1 0
u 8 10 1 0
u 7 9 1 0
u 1 3 1 0

3Figure 5.5
Contents of File SIM.DAT

Simulation of this model stops when 200 requestors have received service. Figure
5.6 contains the server statistics generated by this simulation.

5 Simulation Stopped at Time: 1608
13 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I
CONTENTS

1 1 201 4.1 1 1 0.5 50.6 %
2 1 44 7.3 1 1 0.2 20.0%
3 1 42 10.2 1 0 0.3 26.6%
4 1 113 5.1 1 0 0.4 35.9%

!-.5 1 16 14.2 1 0 0.1 14.1
- 6 1 28 15.6 1 0 0.3 27.2

7 1 2 24.0 1 0 0.0 3.0%
8 1 16 16.9 1 0 0.2 16.9
9 1 9 19.4 1 0 0.1 10.9%

10 1 15 13.0 1 0 0.1 12.1%
11 1 49 6.9 1 0 0.2 21.0%
12 1 22 8.6 1 0 0.1 11.8%
13 1 42 8.0 1 0 0.2 20.8 %

Figure 5.6 Server Statistics for Case Study 8

Course Notes Page C-24

I
Figure 5.6 contains the server statistics generated by this simulation.

I
QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.

CONTENTS
1 201 201 0.0 1 0 0.0
2 45 44 0.0 1 0 0.0
3 42 32 1.1 1 0 0.0
4 113 108 0.1 1 0 0.1
5 16 14 0.2 1 0 0.0
6 28 20 3.6 2 0 0.1
7 2 2 0.0 1 0 0.0
8 16 14 0.4 1 0 0.0
9 9 6 4.7 1 00.1

10 15 12 0.6 1 0 0.0
11 49 45 0.2 1 0 0.0
12 22 22 0.0 1 0 0.0
13 42 36 0.4 1 0 0.03

Figure 5.7 Queue Statistics for Case Study 8I
Case Study # 9 - Using a Feedback Loop

3 In this case study, a requestor returns to a server that it has previously engaged.
This is a simple case of feedback, as depicted in Figure 5.8.

12

12 - 181 68%

3 3
A.S.T.

18 - 36
Terminate

A.S.T.
Stop simulation after 10 - 14
8000 time units

3 Figure 5.8 Case Study 9, Using a Feedback Loop

I Course Notes Page C-25

This illustrates the ability of a requestor to repeatedly engage any server in the
system. In this model, a requestor might engage server 1 arbitrarily many times.
Figure 5.9 shows the data file for this model.

t 8000
u 12 18
u 18 36 3 2 2 32 3 68
u 17 39 1 1 1 100
u 10 14 1 0

Figure 5.9
Contents of SIM.DAT

Simulation of this model stops at time 8000. Figure 5.10 contains the output
generated by this simulation.

Simulation Stopped at Time: 8000
3 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 3 777 27.1 3 3 2.6 87.9%
2 1 256 28.1 1 1 0.9 90.0
3 1 520 12.0 1 0 0.8 78.3

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 780 457 2.5 3 0 0.1
2 257 32 79.9 10 0 2.9
3 520 184 6.8 4 0 0.4

Figure 5.10 Output Produced by Case Study 9

The actual number of requestors to enter this system was probably about 530.
Because of the feedback loop in this model, server 1 was engaged 777 times.

Case Study # 10 - Complex Structures

Our last case study involves several complex probabilistic branches. Figure 5.11
illustrates this model.

Course Notes Page C-26

2

5% 5
55 s A .S .T . 5 "

LA T 132- 4\

A.S.T. temiat

1 5 -5%0
2 8 -3

D_ A.S.T.
A.S.T. 50 -64

Stop simulation 12 - 22

after 6000 time units

Figure 5.11 Case Study 10, Complex Structures

This illustrates the ability of a requestor to take several different paths through the
model. Figure 5.13 shows the data file for this model.

t 6000
u 15 19
u 12 18 1 2 2 55 3 45
u 32 44 2 2 4 65 5 35
u 12 22 1 1 5 100
u 28 36 1 1 3 100
u 50 64 4 0

Figure 5.12
Contents of Data File

Simulation of this model stops at time 6000. Figure 5.13 contains the output
generated by this simulation.

Course Notes Page C-27

Simulation Stopped at Time: 6000
5 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY \ I /
CONTENTS

1 1 352 14.9 1 1 0.9 87.4%

2 2 178 37.8 2 1 1.1 56.1%
3 1 289 17.3 1 1 0.8 83.2%I
4 1 117 32.0 1 1 0.6 62.5
5 4 345 57.4 4 3 3.3 82.5I

QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 353 271 0.6 1 0 0.1
2 179 137 1.8 2 0 0.1
3 290 65 16.7 5 0 0.9
4 119 64 11.9 3 1 0.2
5 348 258 2.3 3 0 0.2

I Figure 5.13 Output Produced by Case Study 10

3 There is a considerable range of server utilizations produced by simulating this
model. Figure 5.14 contains a chart comparing these utilizations.

I go

80--

S60-

50 - - - - - - - - - - __

33-_

20 -

10- - - _ - - - - - - _

1 2 3 4 5
Servw Nurnber

i Figure 5.14 Comparison of Server Utilizations in Case Study 10

Course Notes Page C-28

II

Appendix A - BibliographyI

"Ada experience in the undergraduate curriculum", Communications of the ACM,
S Nov 1992 v35 nil, p53

"An assessment procedure for simulation models: a case study", Operations
Research Sept-Oct 1991 v39 n5, p710

Banks, Jerry, Discrete-event system simulation 514 pages, illus., Englewood Cliffs,
N.J.,Prentice-Hall, c1984

Chelini, J., "An Example of Event-Driven Asynchronous Scheduling", Ada letters,07/01/90

i Chorafas, Dimitris N., Systems and simulation, 503 pages, illus., New York,
Academic Press, 1965

De Acetis, Louis A., "Using ADA tasks to stimulate operating equipment"
Computers in physics, 09/01/90

Devlin, Michael J.I., "Ada Technology for Simulation", National defense, 11/01/90

Franta, W. R., The process view of simulation, 244 pages, illus., New York: North-3 Holland, c1977

Goldsack, Stephen J., Ada for specification : possibilities and limitations, 265 pages,
illus., Cambridge, New York, Cambridge University Press, 1985

I Gonzalez, D.W., "Multitasking Software Components.", Ada letters, 01/01/90

Hoover, S. and Perry R., Simulation: A Problem-Solving Approach, Addison-
Wesley, 1989

McGettrick, Andrew D., Program verification using Ada, 345 pages, Cambridge;
New York : Cambridge University Press, 1982

I
I Course Notes Page C-29

Mize, Joe H., Essentials of simulation, 234 pages, illus., Englewood Cliffs, N.J.,
Prentice-Hall (1968)

"Modeling reality (The science of computing)", American Scientist, Nov-Dec 1990
v78 n6, p495

Murray, A.G., "Ada Tasking as a Tool for Ecological Modelling.", Ada letters,
09/01/90

"New simulation software", Aviation Week & Space Technology, April 20, 1992 v136
In16, p13

I "Parallel Ada in simulation systems.", Defense Electronics, Nov. 1992 v24 nill, p35

5 "Planning queueing simulations", Management Science, Nov 1989 v35 nill, p1341

"1"Prediction and prescription in systems modeling", Operations Research, Jan-FebB1990 v38 nl, p7

5 !Quiggle, Thomas J., "Efficient Periodic Execution of Ada Tasks", Ada letters, Fall 90

Random numbers for simulation. (Discrete Event Simulation)", Communications
"of the ACM, Oct 1990 v33 nl0, p85

I Roos, J. "A Real-Time Support Processor for Ada Tasking", Sigplan notices,
05/01/89

"Secrets of successful simulation studies", Industrial Engineering, May 1990 v22 n5,

I p4 7

"Sensitivity analysis and performance extrapolation for computer simulation
models", _Operations Research, Jan-Feb 1989 v37 n1, p72

Simulation software gains sophistication: control-system simulation", EDN, April
23, 1992 v37 n9, p79

Sjoland, M., Thyselius R., and Sjoland, B., "Adam an Ada Simulation Library", Tri_
Ada 92 Conference Proceedings, pages 108-115

Course Notes Page C-30

Solomon, Susan L., Simulation of waiting-line systems, 452 pages, illus., Englewood

Cliffs, N.J. Prentice-Hall, c1983

Sommerville, Ian, Software Engineering, Fourth Edition, Addison-Wesley, 1992

Teaching a Software Engineering Project Course, Software Engineering Institute,
Course Notes, 1992

Tocher, K. D., The art of simulation, 184 pages, illus., London, English Universities
Press (1973, 1967)

"Using computer simulation as a model for classroom activity", The Social Studies,
Sept-Oct 1987 v78 n5, p225

Weiss, Mark A., Data Structures and Algorithm Analysis in Ada,
Benjamin/Cummings, 1993

Course Notes Page C-31

i

I

I'
U

I,
I Appendix B

! ~ Transparency MastersI

I|

I
I
!

I
I
a Course Notes Page C-32

I
I
I

if a)
a)

I UlJ •E

I 0..

I-

I L.

!-

C-33

I

I
I

I C-33

I". ~

-E

-6-

CDlg

E

0-'-

-'#-0 -s-

C.3 CD

C-3

I

I
I a

I

Lanl

UE

>oE

M to

E o
I a, C

0M! I•-"•-

-.0-C

cn

C-3

! °7E

! --
I

I C3

I CC

EE£ 0)

C1 00

-C-3

0.
00

04 4J .IJ)

0 00I oto

$40

00
0 %D c

E-4 x 0- 04 e-4 4.b

H v H

g r4-.,4 . 4

r. 0' - ~ ~ 4 t

04

-4V V U

I C-37

00

CI)

C-38

I

I---

CD.

C)

C)

,=1-

00

0_

-2 _ _ _

m0C, U) H-

L.o

C-39

• • i i i i i i I i i I I I,

* L..

CD)
=3

* 0

C>)I: CD C,)

U) C/

>. C/ roI QLO

*EE

0

o C-40

ci
-0-

0000
C)0

C:)

0>

0

-0-0

C-41

UC)

IC)

r))

IC) -I--

C-42,

Ic

* I 4

1/C)4

LOC

* _ _ (o

C-43

II

C* C) C) C o 0 C) C
M _0 1,* to1)V

__DUG-~ __ .DZo.94

C-44N

C CI

I -ti J il
C%*O0

LO w0 001

Ln U) V

I~~ ~
CC

("

3 LO

coC

0~4-- :
E ~0

* (/1

IE
CDv

I0
Ic
I0

I

Oo 0

I* Lf ((

UC

SC-4

E

'i 1

000

000

(-0

F: 1 3
00<0E

0 C

C-47

ci)

c/)
LO)

LO

hiiC-4 ifl4
-4--

LO
E

C-48

Le

IC
Iu

0

C--

User Maniual

Table of Contents

Introduction .. U-1

General Information ... U-I

Requirements (Hardware and Software) U-I

Definitions and Terms ... U-2

Using SIMPACK .. U-4

Getting Started ... U-4

Preparing Your Simulation Data File ... U-5

Starting Your Simulation .. U-7

Interpreting Your Simulations Results ... U-7

I
INTRODUCTION

Welcome to the SIMPACK simulation environment. SIMPACK allows you to model
many types of systems on your computer, without having to know much about simulation
programming and discrete-event simulations. SIMPACK automatically generates a model
of your predefined system and produces a report showing various statistics and
details about the behavior of the model that was simulated.

SIMPACK was developed using the Ada programming language. It provides a basic
simulation environment that contains many features needed for discrete-event system
simulation. The Ada source code is provided so that additional features may be added
to this simulation environment.

GENERAL INFORMATION

m The main purpose of SIMPACK is to simulate the behavior of a model or system
that you have defined, and then produce statistical output which contains the results
of that simulation. You are not required to know anything about how to program the
computer to run the simulation, nor are you required to extract information from the
program about the results of the simulation. SIMPACK needs basic information about
the structure of your model, such as the length of time to run the simulation, the3 average inter-arrival time of requestors, and the average service time of the
servers.

I
3 REQUIREMENTS

To be able to use SIMPACK effectively, you must have available to you the3 following hardware configurations:

MINIMUM CONFIGURATION
- 80386-20 MHz DOS-based computer
- 640K RAM memory
- No math-coprocessor
- Any type of monitor & keyboard
- 5.25" or 3.5" Floppy drive
- Hard disk drive with at least 1 MB free space

Having a faster CPU and a math co-processor will reduce the amount time required for
n simulations.

You also need the following software to be able to create and run your
simulations:

3 - DOS 3.3 or above
- GO.BAT -- Included with SIMPACK
- RUN.EXE -- Included with SIMPACK1 - SIMSETUP.SKW -- Included with SIMPACK

I User Manual Page U-1

- SIMULATE.EXE -- Included with SIMPACK-- Main simulation program
-SIM.DAT -- Data file created by template

I

DEFINITIONS &TERMS

The following is a list of terms that are used in the setup, reporting, and
description of SIMPACK:

Server: This is an entity that requestors wait for. A server holds the
requestor for some amount of time to do some sort of processing, then
releases the requestor. The requestor can then leave the system, or
branch to another server for other processing.

Requestor: This is an entity that arrives in the system every so often (arrival
time is a random number based on information supplied by you), and
waits for service by a server for some amount of time. When the server
is available, the requestor spends some amount of time being processed,
then either exits the system, or continues on to wait for another

* Iserver.

Queue: A queue (or line) forms in front of a server if there are requestors
waiting to be processed by that server.

Time: Time units can be of any increment you wish, but you must be consistent
in you units when specifying arrival times, service times, lengths of
simulations, etc. Units can be seconds, milliseconds, nanoseconds, or
even days, weeks, years, or centuries (time units are arbitrary).

Stop-time: This is the time at which you want the simulation to stop running.
After this much simulation time has elapsed, stop the simulation.

Stop-req.: After this number of requestors have been processed, stop the
simulation.

I.A.T.: Inter-arrival time: This is the time interval at which requestors
arrive in the system. The actual arrival times are random numbers
based on the following information:
If you choose a uniform probability distribution, you must supply the
minimum and maximum arrival time intervals (for example, a requestor
arrives every 3 to 5 minutes).
If you choose an exponential probability distribution, you must supply
the mean arrival time (for example, a requestor arrives every 10
seconds, on the average).

A.S.T.: Average service time: This is the length of time that a server holds a
requestor for processing. The actual service times are random numbers
based on the following information:
If you choose a uniform probability distribution, you must supply the
minimum and maximum service times (for example, this server spends
between 5 and 15 milliseconds processing each request).
If you choose an exponential probability distribution, you must supply
the mean service time (for example, this server spends 62 minutesI processing each requestor, on the average).

I User Manual Page U-2

I
Capacity: This is the number of requestors that a server can process all at once.

Ser. reached: This is the number of servers that requestors may branch to from the
current server for other processing.

Server #: This is a unique I1 # that you assign to each server in your system.
This number is used for reporting on the statistics for each individual
server.

Probability: This is the percentage probability that a requestor will go to a
particular server after being processed by the current server. You
specify probabilities when determining which servers can be reached
from the current server.

Avg. Time: For server statistics, this is the average time that all requestors
spent being processed by each server in the system. For queue
statistics, this is the average time that all requestors spent waiting
in line for service.

Entries: For server statistics, this is the number of requestors that were taken
out of queue and began to be processed by a server. For queue
statistics, this is the number of requestors that arrived in the queue
for a server.

O-Entries: This is the number of requestors that arrived at a server, and had to1 wait no time in queue to begin processing.

Max contents: For server statistics, this is the maximum number of requestors that a
server processed at any one time (for example, this might be 3 if the
capacity of the server is 3 or more). For queue statistics, this is
the maximum number of requestors in a queue at any one time.

Current cont.: For server statistics, this is the number of requestors that are still
being held by a server when the simulation ends. For queue statistics,
this is the number of requestors still waiting in queue when simulation
ends.

Avg. contents: For server statistics, this is the average number of requestors that a
server processed throughout the whole simulation (for example, this
might be 1.5 if the capacity of the server is 2 or more). For queue
statistics, this is the average number of requestors waiting in queue
throughout the duration of the simulation (for example, requestors
waited an average of 10 minutes for server 3 during the simulation).

I Utilization: This is the average utilization (in percent) of a server in the system
(for example, if the server was busy processing requestors only half of
the time, then the utilization might be 50%).

I
i

I

U User Manual Page U-3

USING SIMPACK

Getting Started:

To begin using SIMPACK, you must first make sure that you meet the hardware
and software requirements listed in REQUIREMENTS. If you have a hard disk drive and
you want to install the SIMPACK software onto it (your simulations will run much
fasterl), you need to copy all the files from the SIMPACK diskette onto your hard
disk. Below is an example of one way you might be able to install the files (for
other information about copying files and using your hard disk, please consult your
DOS manual or computer system manuals):

1. Insert the SIMPACK disk in a disk drive
2. Copy all files to a subdirectory on your hard disk

Throughout the rest of this section, it is assumed that you are in your
working directory, that is, the place where all of the SIMPACK files are (if you are
using only a floppy drive, you should, most likely, be working from your A: or B:
drive; if you are using a hard drive, you should, most likely, be working from your
C: or D: drive).

The first thing you need to do is to create a complete drawing of your system,
including all servers. Be sure to "umber each server in your picture in order,
starting with 1, and do not repeat any number. Consider the following sample.

2
3% 'V- 00. Terminate

I.A.T. 1 ý A.S.T. 5 (e) 4

5 -10 11 63% 3 -- Terminat
A.S.T. 2 -3 S 10 (a)

0% 5

A.S.T. - O- Terminate
8-10

6.A.S.T. 10 - 15

60. 6

~ ~ Terminate

A.S.T
2-3

3 Sample of Multiple-Server System

User Manual Page U-4

The next thing you need to do is prepare a data file that SIMPACK will use to
simulate your system. You will type "GO" to display a template that allows you to
enter the necessary information for your model. When you save your information in
the template, the data file, named SIM.DAT, is created. Once this file exists, you
will type "SIMULATE" at the DOS prompt. This starts the simulation, using the
information contained in S1M.DAT. When the simulation is complete, SIMPACK prints a
statistics report for all servers and queues in your system.

Preparing Your Simulation Data File:

At the DOS prompt, type "GO" and press <Enter>. This brings up a template
that allows you to enter the details of your model. Following are the screens that
you will see:

S I NULAT I ON SETUP
(prepare data for Ada simulation program)

1. Create a compLete drawing of your system
2. Number each server in order starting with number 1

3. Enter data in this template using integers only
4. Use u (or U) for uniform probability distribution, or

e (or E) for exponential probability distribution
5. Each uniform distribution requires a tow and

a high value
6. Each exponential distribution requires exactly one

value, the mean
7. Hit <Alt> C to clear all data fields
8. Hit <Alt> D to save your data in file SIM.DAT
9. Hit <Alt> S to save this data tenmlate

***** Hit <Return> to continue *

Help:
<ALt> H S I M U L A T I1O N S E T U P
Quit:

<ALt> 0 Expon/ Mean/
I.A.T. Uniform Min Max Stop at time:

1 II 77F-7] stop : Req.: W
Expon / A.S.T.: # servers next next

Server Uniform Min Max Cap reached server# prob server#

I

3

4

5

6

7

8

9

* ~~~~10__ ___ _ _

11

12

*User Manual Page U-5

I You may view the help screen at any time by pressing Alt> H (hold the <ALt> key down and press the
letter H). Press <Return> (or <Enter>) and you will see the main template entry above.

From here, you can press <Alt> H to display a help screen, or <ALT> Q to quit
using the template and exit back to DOS (you need to make sure to save your data
before exiting if you want to). If you want to save your information in the data
file SIM.DAT, press <Alt> D (hold the <Alt> key down and then press the letter D).
You may save the contents of the template itself by pressing <Alt> S (hold the <Alt>
key down and then press the letter S).

The template allows you to define all the servers in your system, including up
to 6 additional servers that can be reached by branching from any one server. The
template lets you define a total of 23 different servers for your model.

As an example, consider the following model:

U

W.-- . Terminote

2 25%
I.A. 1 H As.S. 5

5 -7wEl11

A.S.T. 7 5\% 4
3 - 5 A.S.T.Temnt

S2(A.S.T.
2 -5

ýimulate for 480 time units]I/
I
* Sample Model

First, enter the type of probability distribution you want for arrivals to the
system (I.A.T.). In this model, you should enter "u" for a uniform probability
distribution (otherwise you would enter "e" for an exponential distribution). Next,
enter the arrival increments: "5" for the minimum, and "7" for the maximum. This
means that entities arrive in the system every 5 to 7 minutes (if you had selected
"e" for an exponential distribution, you would only enter the mean arrival time, not
minimum and maximum times. You would enter the mean in the "Mean/Min column, and
leave the "Max" entry blank.).

Next, enter the time at which you want the simulation to end: "480" (enter
this at the "Stop at time:" entry). Since you want to stop at a certain time and not
after a certain number of requestors have been processed, leave the "Stop # Req.:"

* entry blank.

SUser Manual Page U-6

I Now, you can begin defining your servers.

At "Server 1", enter "u" for uniform instead of "e" for exponential. Enter
"3" for "A.S.T. Min" and enter "5" for "A.S.T. Max". Enter "1" for "Cap", since
server I has a capacity of 1. Enter "I" for "# servers reached", since requestors
can go directly to 1 other server (server 2) after finishing at this server. Enter
"2" for "next server #" since server 2 is the server to branch to. Enter "100" for
"prob" since all requestors leaving server 1 will go to server 2.

At "Server 2", enter "e" for exponential instead of "u" for a uniform
distribution. Enter "2" for "A.S.T. Mean/Min", and leave the "A.S.T. Max" entry
blank. Enter "3" for "Cap", since server 2 has a capacity of 3 (this means that
server 2 can process up to 3 requestors at the same time). Enter "2" for "# servers
reached", since requestors can branch to 2 other servers after finishing at this
server. Enter "3" for "next server #", and enter "25" for "prob", since there is a
25% chance of branching to server 3. Keep moving right, and enter "4" for "next
server #", and enter "75" for "prob", since there is a 75% chance of branching to
server 4.

At "Server 3", enter "u" for uniform, "10" for "A.S.T. Min", "15" for "A.S.T.
Max", "i" for "Cap", and "0" for "# servers reached", since requestors leave the
system after being processed by server 3.

At "Server 4", enter "u" for uniform, "2" for "A.S.T. Min", "5" for "A.S.T.
Max", "1" for "Cap", and "0" for "# servers reached", since requestors leave the
system after being processed by server 4.

At this point, you have defined a simulation based on the predefined model
shown above. To save this information, and create the data file SIM.DAT (which is
needed to run the simulation), press <Alt> D (hold the <Alt> key down and then press
the letter D). You may save the contents of the template itself by pressing <Alt> S
(hold the <Alt> key down and then press the letter S). After the information is
saved, you can press <Alt> Q to quit the template program and return to the DOS

* prompt.

I
Starting Your Simulation:

Once the data file (SIM.DAT) has been created by the template program, you can
type "SIMPACK" at the DOS prompt to run your simulation. When the simulation is3 done, a statistics report will be printed to the screen.

I
Interpreting Your Simulation Results:

Statistics about all servers and all queues in your model are calculated and
displayed after the simulation runs to completion. Server statbstics include
capacity, number of entries, average time per entry, maximum contents, current
contents, and average contents, and utilization of every server in the model. Queue3 statistics include number of entries, number of entries waiting no time for service,

SUser Manual Page U-7

average time per entry in queue, maximum contents, current contents, and average
contents of every queue in the system. (For explanations of these terms, you can3 refer to TERMS & DEFINITIONS).

For this example, the statistical output might look like the following:

I Simulation Stopped at Time: 480
4 servers in this run.
SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL.

PER ENTRY CONTINTS /
1 1 77 3.9 1 0 0.6 63.1X
2 3 76 2.2 2 1 0.4 11.7%
3 1 18 13.2 1 1 0.5 49.6%
4 1 57 3.6 1 0 0.4 42.3 %

Q QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.
CONTENTS

1 77 77 0.0 1 0 0.0
2 77 77 0.0 1 0 0.0
3 19 13 2.8 2 0 0.1
4 57 50 0.3 1 0 0.0

The first line of the output states that simulation stopped at time 480. The second
line indicates that there were four servers in this model. The *.xt two groupings of
output are statistics for the servers and for the queues. Note that exactly one
queue automatically forms in front of each server, regardless of its capacity.

Server 1 had a capacity of 1 and provided service to 77 requestors. The
average time for each requestor was 3.9 time units. The server provided service to a
maximum of one requestor at a time (recall its capacity is one). At the end of
simulation, the current contents of the server was zero, i.e., the server was idle.
The average contents of the server was 0.6 and the utilization of the server was

63.1%. Descriptions of the other servers is similar. Note that for server 2, its
maximum contents was two, and It was processing one requestor when simulation
stopped.

Queue 1 had a total of 77 entries and 77 zero entries. That is, 77 requestors
spend zero time in the queue. The average amount of time requestors spent in the
queue was zero, and there was a maximum of one requestor in the queue during the
simulation. The average number of requestors in the queue was zero. Note that for
queue 3, seven requestors spent some time in that queue and two requestors were in
the queue, waiting for service, when simulation stopped.

I
I
I
I
I
I User Manual Page U-8

I

I
I
I
I,
I

I
| System Manual

I
I
I
I
I
I
U
I
I

Table of Contents

Introduction ... S-1

Input ... S-1

System D ata .. S-2

D ata D escribing Servers ... S-3

O perations on the Input File ... S-6

D ata Storage .. S-13

System A rchitecture ... S-17

Servers ... S-18

R equestors .. S-19

Events .. S-20

O perations on D ata O bjects .. S-20

O utput ... S-25

Sim ulation Term ination ... S-27

A ppendix A - Statistics G athered ... S-28

A ppendix B - O ther Item s ... S-31

A ppendix C - K now n Bugs .. S-32

A ppendix D - U pgrades ... S-32

I
I

SIMPACK is a multipurpose simulation package designed to run on a 32-bit 11M-
compatible machine. It was compiled with Meridian Ada and comes with the following
files:

RANDOM.ADA -- contains the random number generator package used with the program.

I SIMULATE.ADA -- contains the main subprogram to drive the package.

SIMPACK.ADA -- contains the SIMPACK package, which does everything else.

To build simulate.exe, compile the files in the following order:
RANDOM.ADA, SIMPACK.ADA, SIMULATE.ADA.

I This program also requires the use of an input file which will describe the system to
be implemented. This file should always be named SIM.DAT.I

U 1.0 INPUT

All input into the program is from the input file SIM.DAT. Here is an example input
file:

1000
u24
u 1 2 1 4 2 25 3 25 4 25 5 25
u 5 10 1 0
u 1 2 1 2 6 50 7 50
u 10 15 1 0
u 1 2 3 2 8 50 g 50
u 10 15 1 0
u 1 2 1 0
u 510 103 u1210

Figure I - Example Input File

Now let's dissect this file to determine what it is trying to tell us.

I
I
I
I
I System Manual Page S-i

t
1000 -system data.u 2__4

u 1 2 1 4 2 25 3 25 4 25 5 25
u 5 10 1 0
u 1 2 1 2 6 50 7 50
u 10 15 1 0
* 1 2 3 2 8 50 9 50 Data describing servers
* 10 15 1 0
u51010
u1210

3I Figure 2 - Contents of Example Data File

First, let's discuss the system data.

1.1 SYSTEM DATA:

3 Line 1: t

The "t" tells under what conditions the simulation being specified will terminate.
There are three possible letters that can appear here are 't', 'r' and 's'. 'T'
stands for "time", and means that the simulation must stop after a specified time has
elapsed. 'R' stands for "requestors", and signifies that the system should terminate
after a number of requestors have left the simulated system. 'S' stands for "starve",
and signifies that after a given time the system will stop generating new requestors.
When this happens the system will process all requestors still waiting to be
processed, and terminate when all requestors have left the system. In effect, the

system "starves" to death. The character being read may be upper or lower case, as3 the program is case insensitive.

Line 2: 1000
This line specifies either a time or number of requestors, depending on what the exit
condition that was Just specified is. If the condition is "time" or "starve" this
number is the time after which the simulation either terminates or starves. Otherwise
this specifies the number of requestors the system will process before it terminates.

Of course, the system may terminate under a number of other conditions, but these are
abnormal and are reached because something is going wrong with the program. Normal
termination occurs because one of these three conditions has occurred.

m Line 3: u 2 4
This line sets up the random number generator for the system, which needs it to
generate the arrival times for new requestors. There are three pieces of information
here: 'u' tells the program that the distribution for this random

number generator is UNIFORM. The only other possibility
at this time is 'e' for EXPONENTIAL.

"2 4" specifies the range of values (minimum .. maximum) that
the random number generator may generate. In this case,

the random number may be no less than 2 and no greater3 than 4.

I System Manual Page S-2

If distribution is EXPONENTIAL, we cannot specify a range
of values. Instead, we specify a mean and the program
will generate random number whose mean will (hopefully)
be that specified. Of course, if we need a mean and
not a range we only need one number. So an exponential
specification would look like this:

"fe 310

All system data is read in by SIMULATE, and some of it is passed in as a parameter
to START SIMULATION, which then sets the appropriate fields in the system variable
SYS. (The reason for this setup is that SYS is not visible from SIMULATE because it
is outside of the package SYS is in, SIMPACK. Thus, if we want to change SYS's fields
we have to do it from a procedure inside the SIMPACK package. So we pass the system
data we wish to set as a parameter to START SIMULATION, which changes the global
variable).

That just about covers the first three lines of the input file. What about the
server data?

1.2 DATA DESCRIBING SERVERS.

There are nine lines (see figure 2) describing servers, each line describing a single
server. There is no reason the data all has to be on one line, but I find this
format to be more readable than other forms. Here is an example line describing
server #5:

u 1 2 3 2 8 50 9 50

Now let's cut this line apart to find out what it is telling us.

"",u 1 2" This describes the random number generator in exactly the same way
that we described the random number generator (RNG) in the system
data. The difference is that the system RNG is used to tell how
often arrival times occur, while THIS RNG is used to generate the
service time when a requestor is processed. As before, this could
be made an EXPONENTIAL-distribution RNG by giving the letter Eand a mean such as "e 100." THIS WILL PROBABLY BE THE SOURCE OF

A LOT OF BUGS SO PAY ATTENTION: Remember that when an exponential
distribution is asked for it only needs ONE number, not the TWO
needed for uniform distribution. If a user enters "e 3 7" -- an easy
mistake to make since we have so many numbers on this line -- things
will get weird.

£ "31 Sets the capacity of the server to 3.

"2 8 50 1 50" This tells it that TWO servers can be reached from this
server, that one of them is server 8 and there is a 50 % chance
it will go there. The other is server 9 and that this server
should send a requestor here if that requestor doesn't go
to server 8.

The template for this line is
Distribution type I Min/Mean service time I Max service time I Capacityg (u e) (UNIFORM ONLY)

m System Manual Page S-3

I
I

Number of servers pointed to I 1st reachable server I probability that the
Setc... requestor will go there

"What if I don't want the requestor to go ANYWHERE from this server? What if I just
want it to terminate?"

In that case, Put a 0 (zero) in the "number of servers pointed to" field and makeg that the end of the line. Here is an example:

"e 10 1 0"

Which means that this server has an exponential distribution with mean 10, a capacity
of one, and any requestor leaving it must leave the system.

"What if I want a requestor arriving at this server to either leave the system or be3 redirected to another server?"

Well, this is the way the probabilities work to determine where a server goes next:
*** 1. A random number that is greater than or equal to 1 and less than3100 (the minimum might be zero .. I'm not sure).

2. Add the first probability on the list to SUM, which is initialized
to zero. Compare the test value to SUM, and if TEST < SUM
send it to the first server. Else move onto the next
pointer and repeat step 2 until the test value is lower than the
sum. If the test value is higher than all the probabilities added
together, the requestor is made to exit.

Thus, the way to guarantee that a requestor will DEFINITELY go
to another server from the current one is to make certain that
the probabilities of the requestor sum to 100. If the probabilities
do not sum to 100, then there is a (100 - sum of probs.) % chance
that the requestor will terminate. For example, the line

i "e 45 2 1 8 50"

tells us that this server has an exponential distribution with a mean of 45, that the
server has a capacity of 2, that one server can be reached from this one, that the
one server that can be reached from here is server 8 and that there is a 50% chance
it will go there. This means that there is a (100 - 50) - 50 chance that a
requestor leaving this server will terminate.

3 Here is the code for the function called SETDESTINATION that performs this task:

I
3

I

l System Manual Page S-4
• , m n I I

-- This function determines which server the requestor REQ should visit
-- next, based on the possible servers that can be reached from SERVER
-- and the probability distribution describing how probable it is
-- that the requestor will visit a given server. This information is held in
-- a linked list pointed to by the current server's DISTRIBUTION field.
-- The function returns the identification number of the next
-- server to be visited. If an exception is raised the value zero is returned.

-- Note that when the requestors WHERE NEXT field :- 0 it means that the
-- requestor should leave the system next. There is no server 0.

function SET DESTINATION (REQ: REQUESTLINK; SERVER: SERVERLISTTYPE)
return INTEGER is

TEST LIST: DISTRIBUTION LIST;
TEST, SUM, COUNT, ID: INTEGER :- 0;
DESTINATION FOUND: BOOLEAN :- FALSE;
begin
TEST LIST :- SERVER.DISTRIBUTION;
if SERVER.NUM PATHS - 0 then

return 0;
else
TEST :-,RANDOM INT (100);
COUNT : 1;

while not DESTINATION FOUND loop
SUM :- SUM + TEST LIST.PROBABILITY;
if TEST <- SUM thin

ID := TEST LIST.WHERE TO GO;
DESTINATION FOUND :- TRUE;

end if;
if not DESTINATION FOUND then

COUNT :- COUNT ; 1;
TEST LIST :- TEST LIST.NEXT;

end if;
if COUNT > SERVER.NUM PATHS then

DESTINATION-FOUND :- TRUE;
ID :- 0;

end if;
end loop;

return ID;
end if;
exception
when others ->

PUT ("SET DESTINATION has failed. Zero will be returned. ");
NEW LINE;
return 0;

end SET-DESTINATION;

Figure 3 - Listing of Function SET-DESTINATION

Before we leave, here are some more example inputs:

"u 5 10 1 1 1 100"
This server has a uniform distribution with range 5..10. It has capacity 1 and can
reach one other server: Server #1, and a requestor will always go there.

"u 13 20 4 0"

System Manual Page S-5

This server has a uniform distribution with range 13..20. It has a capacity of 4 and
no servers can be reached from here. This means that a requestor arriving here must
exit the system when it leaves this server.

"e 1 2 3 2 25 3 25 4 25"
This server has an exponential distribution with a mean of one. It has a CAPACITY of
2 and three servers may be reached from here: a 25% chance to reach server 2. a 25%
chance to reach server 3 and a 25% chance to reach server 4. Thus, there is a 75%
chance that a requestor leaving this server will be redirected to another server, and
a 25% chance that it will exit.

1.3 OPERATIONS ON THE INPUT FILE:

The input file must always be named SIM.DAT and is operated on by two procedures:
CREATE SERVER (in SIMPACK.ADA) and SIMULATE (in SIMULATE.ADA). SIMULATE opens the
file aid reads in the SYSTEM DATA. CREATE SERVER then reads in the data DESCRIBING
SERVERS. SIMULATE then closes the data fiTe.

The experienced Ada programners out there will recognize a minor difficulty: the
input file contains both numbers and characters, and in Ada everything in a file must
be of the same typel We solve this by treating the input file as if it consisted
entirely of characters, and we have a function called INTGET which converts the
character strings read into integers. Thus, CREATE SERVER and SIMULATE don't
REALLY read anything. Instead, they call our two input functions INTGET and
CHARGET, which get an integer or character respectively and return the data object to
the calling unit.

A feature of INTGET and CHARGET is that they have attitudes. By this I mean that
INTGET is very touchy about the data it will accept. It will read an integer string
(such as "234") and return it as 234, ignore whitespace and keep reading if it sees
it, and abort the entire program if it reads an alphabetic or punctuation character.
Similarly, CHARGET accepts a single character, ignores whitespace and keeps reading
if it sees it, and kills the program if it sees a numeric character.

The reasoning behind this unfriendly behavior is that INTGET is only used when we are
sure the next string should be numeric. CHARGET is also only used if we are sure the
next character will be alphabetic. Thus, if INTGET sees a character or CHARGET a
number, that means one of two things has happened:

1. We have somehow missed the data we were supposed to read in (which has
happened occasionally).

2. The input file is improperly formatted.

In either case, the integrity of the data being read in is compromised and to
continue would produce wild results. Thus, the simulation is aborted.

Figure 4 contains the code for the four procedures that access the input file
SIM.DAT. Following is a listing of procedures CHARGET, INTGET, CREATESERVER (in
SIMPACK.ADA) and SIMULATE (in SIMULATE.ADA).

System Manual Page S-6

-- This function pulls a character out of the file described by
-- FILE and returns it.
-- Note that it expects to read a letter a .. z or A .. Z. If some
-- other visible character is read (such as a number or punctuation mark)
-- the function will not return anything but instead propagate the
-- PROGRAM ERROR exception to the calling unit. PROGRAM ERROR will also
-- be propagated to the calling unit if the end of the fTle is reached before
-- a proper character is read.

function CHARGET (FILE: TEXT IO.FILETYPE) return CHARACTER is
INPUT: CHARACTER :- ASCII.BEr;
END FILE, BAD DATA: EXCEPTION;
begTn
while CHARACTER' POS (INPUT) < 33 loop

if TEXT IO.END OF FILE (FILE) then
raise ENDFTLET

else
TEXT IO.GET (FILE, INPUT);

end if;-
end loop;
if (CHARACTER' POS (INPUT) > 64 and CHARACTER' POS (INPUT) 91)

or (CHARACTER' POS (INPUT) > 96 and CHARACTER' POS (INPUT) < 123)
then

return INPUT;
else raise BADDATA;
end if;
exception
when END FILE ->

PUT-("I tried to read a character but could not find it -fHore");
NEW LINE;
PUT-("I reached the end of the file."); NEW-LINE;
raise PROGRAMERROR;

when BAD DATA ->
PUT-("An invalid character input has been entered."); NEW LINE;
PUT ("ASCII value of character is"); PUT (CHARACTER'POS (TNPUT)); NEWLINE;
raise PROGRAMERROR;

end CHARGET;

-- This function gets an array of characters from the
-- text file FILE, converts it into an integer number
-- and returns it. Example: the string "234" is returned as
-- the integer number 234.
-- This function expects to read a number of some kind, and if a visible (
-- i.e. non-whitespace) character that is not in 0 .. 9 is read, the exception
-- PROGRAM ERROR will be propagated to the calling unit. This will also happen
-- if the end of file is reached before a number is read.
-- This simulation program is designed to use 16-bit arithmetic on a 32-bit
-- machine. Thus, a number larger than 32767 will cause NUMERIC ERROR to be
-- propagated to the calling environment.

function INTGET (FILE: TEXT IO.FILE TYPE) return INTEGER is
CHAR ARRAY: array (1..80) oT CHARACTER;
MULTTPLIER: INTEGER :- 1;
COUNTER: INTEGER :- 1;
STOP :BOOLEAN :- FALSE;
DUMMY: CHARACTER :- ASCII.BEL;
TEMP: INTEGER;

System Manual Page S-7

RETURN VALUE: INTEGER :- 0;
BIGI, 91G2: INTEGER 32;
END FILE, CHARACTER-INPUT: EXCEPTION;
begin

while (not (TEXT IO.ENr. OF FILE(FILE))) and
(not (CHARACTER' TOS-(DUMMY) > 47 and CHARACTER'POS (DUMMY) < 58))
loop
TEXT IO.GET (FILE, DUMMY);
if (CHARACTER' POS (DUMMY) > 32 and CHARACTER' POS (DUMMY) < 48
or CHARACTER' POS (DUMMY) > 57 then

raise CHARACTER INPUT;
end if;

end loop;

if (not (CHARACTER' POS (DUMMY) > 47 and CHARACTER' POS (DUMMY) < 58))
and TEXT IO.END OF FILE (FILE) then
raise ENDFILE;-

end if;

CHAR ARRAY (COUNTER) :- DUMMY;
COUNTER :- COUNTER + 1;
while not STOP loop

if TEXT IO.END OF LINE (FILE) or TEXT IO.END OF FILE (FILE) then
STOP-:- TRUE;

else
TEXTIO.GET (FILE, DUMMY);

if TEXT IO.END OF LINE (FILE) or TEXT IO.END OF FILE (FILE) then
STOP :- TRUE;

end if;
if CHARACTER'POS (DUMMY) > 47 and CHARACTER'POS (DUMMY) < 58 then

CHAR ARRAY(COUNTER) :- DUMMY;
COUNTER :- COUNTER + 1;
else STOP :- TRUE;
end if;

end if; -- if we can read a character.
end loop;
COUNTER :- COUNTER - 1;

while COUNTER >- 1 loop
TEMP :- (CHARACTER' POS (CHARARRAY (COUNTER))) - 48;
TEMP : TEMP * MULTIPLIER;
BIGI :- INTEGER 32 (RETURN VALUE);
BIG2 :- INTEGER-32 (TEMP);-
if BIG1+BIG2 > 2 ** 15 -1 then

raise NUMERICERROR;
end if;
RETURN VALUE :- RETURN VALUE + TEMP;
if MULTIPLIER < 10000 Then

MULTIPLIER :- MULTIPLIER * 10;
elsif COUNTER > 1 then

raise NUMERICERROR;
end if;
COUNTER :- COUNTER - 1;

end loop;

return RETURN-VALUE;
exception
when CHARACTER-INPUT ->

System Manual Page S-8

I
I

PUT ("I read a character where I expected a number."); NEW LINE;
PUT ("There must be something wrong with the input file.");-NEW_LINE;
raise PROGRAMERROR;

when END FILE -=PUT-("I have reached the end of the input file and I could not");

NEW LINE;
PUT-("Find an integer value I could accept."); NEW LINE;
raise PROGRAM_ERROR;

when NUMERIC ERROR ->
PUT ("This simulation package only allows user values of 16 bits.");
NEW LINE;
PUT-("In other words, the maximum value that can be given is 32767.");
NEW LINE;
raiie NUMERICERROR;

end INTGET;

-- This procedure creates a server, specifying the minimum service time,
-- the maximum service time, and the maximum capacity of the server.
-- Having done this, it inserts the server onto SERV LIST, which is
-- a global variable and a SIDE EFFECT. Note that tFis server must read
-- INPUT FILE to get much of it's data. This file (named SIM.DAT) must be in
-- the current working directory.
-- In event of an exception, PROGRAM ERROR is propagated to the calling
-- environment.
-- CREATE SERVER will also check various data to see if it is accurate or not.
-- CREATE-SERVER will fail under the following conditions:
-- 1. If capacity is less than one frr any server.
-- 2. If the character specifying the distribution is not 'u', 'U', 'e'
-- or 'e'.
-- 3. If any of the associated service times (minimum, maximum, or in
-- the case of EXPONENTIAL distribution mean, which is stored in the
-- minimum field ASTLOW) is less than 1.3-4. If the sum of the probabilities is greater than 100.

-- Note that if the minimum value is greater than the maximum value, they
-- will be flipped.

procedure CREATE SERVER (HIGHEST SERVER, SERVER COUNT: out INTEGER;
INPUT FTLE: in TEXTIOTFILETYPE) is

LOW, HIGH, CAPACITY: INTEGER : -9000;
COUNTER: INTEGER;
NEWITEM: SERVER LIST TYPE;
TEMP: DISTRIBUTTON LTST;
WHATKIND: PROBABIEITY DISTRIBUTION;
ANSWER: CHARACTER :- 'a';
LOCAL ASTLOW, LOCAL ASTHIGH: INTEGER; -- Local ASTLOW and ASTHIGH.
TOTALPROBABILITY: TNTEGER :- 0;
begin
if SYS.HIGHEST SERVER = 0 then

SYS.HIGHEST-SERVER := 1;

end if;
while ANSWFR I- 'u' and ANSWER /- 'u' and ANSWER /= 'e' and ANSWER /= 'E' loop

ANSWER :- CHA;GET (INPUTFILE);
end loop;
if ANSWER = 'u' or ANSWER = 'U' then

WHAT KIND :- UNIFORM;
else WHAT KIND := EXPONENTIAL;
end if;

3 if WHAT-KIND - EXPONENTIAL then

1 System Manual Page S-9

LOW :- INTGET (INPUTFILE);
if LOW < 1 then

PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
raise PROGRAMERROR;

end if;
HIGH :- 2 ** 15 - 1;

else
LOW :- INTGET (INPUT FILE);
if LOW < 1 then

PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
ratie PROGRAMERROR;

end if;
HIGH :- INTGET (INPUT FILE);

if HIGH < I then
PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
raiie PROGRAM-ERROR;

end if;
end if;

CAPACITY :- INTGET (INPUTFILE);
if CAPACITY < 1 then

PUT ("Capacity must be greater than zero."); NEW-LINE;
raise PROGRAMERROR;

end if;
if LOW > HIGH then

PUT ("The entered minimum service time is greater than the maximum.");
NEW LINE;
PUT-("I shall use the lower of the two values as the minimum and ");
NEW LINE;
PUT-("the other as the maximum service time."); NEWLINE;
LOCAL ASTLOW :- HIGH;
LOCAL-ASTHIGH :- LOW;

else
LOCAL ASTLOW :- LOW;
LOCAL ASTHIGH :- HIGH;

end if;

NEWITEM :- new SERVER-TYPE;

NEWITEM.NUM PATHS :- INTGET (INPUT FILE);
-- PUT ("Nuiber of paths - "); PUT-(NEWITEM.NUMPATHS); NEW LINE;
if NEWITEM.NUM PATHS < 0 then

PUT ("The number of paths must be at least zero."); NEWLINE;
raise PROGRAM ERROR;

end if;
if NEWITEM.NUM PATHS - 0 then

TEMP :- new-DISTRIBUTION RECORD;
TEMP.WHERE TO GO : 0;-
TEMP.PROBA9ILTTY :- 100;
DIST INSERT (TEMP, NEWITEM.DISTRIBUTION);

else
TOTAL PROBABILITY :" 101;
while-TOTAL PROBABILITY > 100 loop

TOTAL PROBABILITY := 0;
for COUNTER in I .. NEWITEM.NUM PATHS loop

TEMP :- new DISTRIBUTIONRECORD;

l System Manual Page S-1O

TEMP.WHERE TO GO :- INTGET (INPUT FILE);
if TEMP.WHERE-TO GO > SYS.HIGHEST-SERVER then

SYS.HIGHEST SERVER :- TEMP.WHERETOGO;
end if;
TEMP.PROBABILITY :- 101;

while TEMP.PROBABILITY > 100 or TEMP.PROBABILITY < 0 loop
TEMP.PROBABILITY :- INTGET (INPUT FILE);

PUT ("probability - "); PUT (TEMP.PROBABILITY); NEWLINE;
end loop;

DIST INSERT (TEMP, NEWITEM.DISTRIBUTION);
TOTAL PROBABILITY :- TOTALPROBABILITY + TEMP.PROBABILITY;

end loop;

if TOTAL PROBABILITY > 100 then
PUT-("The sum of all the probabilities for a single server");
NEW LINE;
PUT-("Should not exceed 100. I'm sorry, but the simulation will");
NEW LINE;
PUT-("have to be aborted."); NEW LINE;
raise PROGRAMERROR;

end if;
end loop; -- of while loop.

end if; -- of if NUMPATHS - 0.

NEWITEM.WHAT KIND :- WHAT KIND;
NEWITEM.ASTL6W - LOCAL ASTLOW;
NEWITEI4.ASTHIGH :- LOCAL ASTHIGH;
NEWITEM.CAPACITY = CAPAWITY;

NEWITEM.NUMBER OF ENTRIES := 0;
NEWITEM.UTILIZATION : 0.0;
NEWITEM.MAX CONTENTS :- 0;
NEWITEM.CURRENT CONTENTS :- 0;
NEWITEM.AVERAGE-CONTENTS := 0.0;
NEWITEM.TOTAL CONTENTS :- 0;
NEWITEM.REQUEfTORS WAITING :- 0;
NEWITEM.AVERAGE TIRE PER ENTRY :- 0.0;
NEWITEM.LAST DEPARTURE :- FALSE;
NEWITEM.TOTAIAST := 0;

NEWITEM.WAIT Q.Q PTR :- null;
NEWITEM.WAIT-Q.TOTAL QENTRIES :- 0;
NEWITEM.WAIT-Q.MAX QCONTENTS :- 0;
NEWITEM.WAITfQ.CURAENTQCONTENTS : 0;
NEWITEM.WAIT Q.AVERAGE QCONTENTS :0 0.0;
NEWITEM.WAIT-Q.ZERO QENTRIES :- 0;
NEWITEM.WAIT-Q.AVERAGE QTIME:- 0.0;
NEWITEM.WAIT-Q.TOTAL QTIME :- 0;
NEWITEM.WAIT-Q.TOTAL-QCONTENTS :- 0;
SERVINSERT TNEWITEM, SERVLIST, SYS.SERVERCREATED); -- POSSIBLE BAD MOVE

-- using SYS.SERVER CREATED.

if SYS.SERVER CREATED then
CURRENT SERVER :- NEWITEM;

end if;

SYS.SERVER COUNT SYS.SERVER COUNT + 1;
SERVER COUNT :- SYS.SERVER COURT; -- parameter assignments.
HIGHEST SERVER :- SYS.HIGHESTSERVER;
exception

System Manual Page S-1I

I
when others =>

PUT ("CREATE SERVER procedure has failed."); NEW-LINE;
raise PROGRAM ERROR;

end CREATE-SERVER;

with TEXT IO;
with ADA 10; use ADA 10;
with SIMPACK; use SIRPACK;

5 -- Procedure SIMULATE is the main procedure for this program.
-- It opens the input file SIM.DAT, reads the system data out of it,
-- calls GENERATE ARRIVAL to put an initial arrival event on the queue,
m. calls CREATE SERVER, which creates servers and reads the information
-- associated with them from the open file. SIMULATE then calls
-- START SIMULATION, and if it terminates normally calls PRINT STATS

-- to prTnt the statistics of interest to the user. It then caTls
-- RESET to "clean" the data space and terminates.
-- If it receives an exception from any subprogram it prints out a short
-- message and exits.

procedure SIMULATE is
IATLOW : INTEGER :- -10;
IATHIGH : INTEGER :- -10;
ASTLOW : INTEGER : 18;
ASTHIGH : INTEGER :- 22;
CAPACITY : INTEGER :- 1;
TIME: INTEGER :- -1;
START: BOOLEAN :- FALSE;
ANSWER: CHARACTER :- ýa';
CONDITION: STOPTYPE :- ATIME;
HIGHEST SERVER, SERVER COUNT: INTEGER :- 0;
DIST: PROBABILITY DISTRIBUTION;
INPUTFILE: TEXTTO.FILETYPE;

begin

TEXTIO.OPEN (INPUTFILE, TEXTIO.IN_FILE,"sim.dat");

while ANSWER /- 'T' and ANSWER /- 't' and ANSWER /- 'R' and ANSWER /= 'r' and ANSWER
/- 's' and ANSWER /- 'S' loop

ANSWER :- CHARGET (INPUTFILE);
end loop;

if ANSWER - 'T' or ANSWER - 't' then
CONDITION : ATIME;

elsif ANSWER - 'S' or ANSWER - 's' then
CONDITION :- STARVE;

else CONDITION :- REQUESTORS;3 end if;

TIME :- INTGET (INPUTFILE);
if TIME < I then

PUT ("That time is invalidi"); NEW LINE;
PUT ("Simulation aborted."); NEWLTNE;
raise PROGRAMERROR;

end if;

while ANSWER /- 'u' and ANSWER /- 'U' and ANSWER /- 'e' and ANSWER /- 'E' loop
ANSWER : CHARGET (INPUTFILE);3 end loop;

SSystem Manual Page S-12

I
I

if ANSWER - 'e' or ANSWER - 'E' then
DIST :- EXPONENTIAL;

else DIST :- UNIFORM;
end if;

ANSWER :- 'a';
IATLOW : INTGET (INPUTFILE);
if IATLOW < 1 then

PUT ("Arrival times of less than one are not allowed."); NEW-LINE;
PUT ("Simulation aborted."); NEWLINE;
raise PROGRAMERROR;

end if;

if DIST - "NIFORM then
IATHIGH :- INTGET (INPUT FILE);
PUT ("IATHIGH - "); PUT TIATHIGH); NEWLINE;

if IATHIGH < 1 then
PUT ("Arrival times of less than one are not allowed."); NEWLINE;
PUT ("Simulation aborted."); NEWLINE;
raise PROGRAM-ERROR;

end if;
else
IATHIGH :- 2 ** 15 -1;
end if;
GENERATE ARRIVAL (IATLOW, IATHIGH, DIST);

while not START loop
CREATE SERVER (HIGHEST SERVER, SERVER COUNT, INPUTFILE);
if HIGhEST SERVER - SErVERCOUNT then-

START :- TRUE;
end if;
end loop;

TEXTIO.CLOSE (INPUTFILE);

START SIMULATION (DIST, IATLOW, IATHIGH, CONDITION, TIME);
PRINT STATS;
RESET;
exception
when TEXT IO.NAME ERROR ->

PUT T"Data fTle not found."); NEW-LINE;
when others -,

PUT ("Simulation aborted."); NEW LINE;

end SIMULATE;I
Figure 4 - Listing of Procedures that Access Data File SIM.DAT

3

1 2.0 DATA STORAGE:
Data from the input file:

System data:
There are 5 pieces of data taken from the input file describing the system:
The condition under which we terminate the simulation, the time (or number
of requestors) at which termination (or starvation) occurs, the distribution
for the RNG for the arrivals, and the range of values (or mean) for the

I ~~trl*I:fII PfI

I
RNG.

All this data passes through several intermediate variables during the
procedure, but in the end it is all stored in the variable SYS, which
is of SYSTEM TYPE. SYS is global to the package, which means it can be
accessed by any subprogram except SIMULATE. SYSTEM TYPE is a record
containing almost all the data needed to describe the simulation in the large
except server data. There are two other global variables: FINISHED, which
is set to TRUE if the simulation should be terminated now, and ERROR, which

i is used to decide whether to print a certain error message or not.

I Server data:

For every server there corresponds a single record of SERVER TYPE, which
contains almost everything connected with the servers, including queues

I and pointers to other servers.

The data for all the servers is placed in a linked list of SERVER TYPE. This
allows a user to create as many servers as (s)he wishes dynamicalTy.
This list is stored in the same place as SYS: global to the package, making
it visible to everything but SIMULATE.

Figure 5 shows the specification of the data type: and r package's global
variables.

package SIMPACK is
type PROBABILITY DISTRIBUTION is (UNIFORM,EXPONENTIAL,k'ORMAL,DISCRETE);
-- This type telTs what distribution the random number generator will
-- use. Note that NORMAL and DISCRETE rpmain unimplemented at this point.

U type INTEGER_32 is range -2 ** 31 .. 2 ** 31 -1;
-- A 32-bit integer type. Used only for testing to see if MAXINT
-- (2 ** 15 -1) has been exceeded.

type EVENTCLASS is (ARRIVE, DEPART, STOPSIMULATION, SAMPLE);

-- An enumerated type describing the different kinds of events
-- that may occur during the simulation. At present, they include:
-- 1. The arrival or departure of a simulation.
-- 2. The termination of the simulation.

* -- 3. The queue sizes and various other things are sampled.

type STOPTYPE is (REQUESTORS, ATIME, STARVE);
-- An enumerated type describing the three different normal exit
-- conditions for the simulation: when a certain number of requestors
-- has left the system, when a certain time is reached on the clock,
-- and starvation, which occurs when after a certain time the system
-- prevents the arrival of any more requestors. The system goes on
-- to finish everything already on the queues and in system, then
-- terminates.

type SCHEDULENODE;
type SCHEDULELINK is access SCHEDULENODE;
type SCHEDULENODE is record

CLASS: EVENTCLASS; -- type of event
ACTIVATETIME: INTEGER; -- when event should occur

System Manual Page S-14

MAX ARRIVAL TIME:INTEGER; -- length of time for event
MIN-ARRIVALVTIME: INTEGER; -- tells what the minimum starting

-- value is.
WHEREAMI : INTEGER; -- Used to tell which server the current event

-- is occurring at.
FROM-SERVER: BOOLEAN; -- Tells whether the last event

-- was from a server or not (This only
-- makes sense if the last event was an arrival).

NEXT: SCHEDULELINK; -- pointer for list membership
end record;
-- Describes an event that occurs during the simulation. Since all events
-- are stored on the queue, it has a pointer type associated with it.

type REQUESTNODE;
type REQUESTLINK is access REQUESTNODE;
type REQUESTNODE is record

WHERE NEXT: INTEGER; -- Tells what server to visit next.
CREATTONTIME: INTEGER; -- When requestor was created.
NEXT: REQUESTLINK; -- Pointer for list membership.

end record;
-- represents a requestor.

type QUEUE TYPE is record
Q PTRT REQUESTLINK; -- A pointer to the queue proper.
MAX QCONTENTS: INTEGER; -- Maximum contents.
AVERAGE QCONTENTS: FLOAT; -- Average contents during simulation.
TOTAL QrNTRIES: INTEGER; -- Total entries into the queue.
ZEROQENTRIES: INTEGER; -- Number of entries waiting 0 time in queue.
AVERAGE QTIME: FLOAT; -- Average time in queue during simulation.
TOTAL QTIME: INTEGER; -- Total time in queue.
TOTAL-QCONTENTS: INTEGER;
CURRENTQCONTENTS: INTEGER; -- Contents of queue when simulation stops.

end record;
-- contains the data associated with a queue

type DISTRIBUTION RECORD;
type DISTRIBUTION LIST is access DISTRIBUTIONRECORD;
type DISTRIBUTION-RECORD is record

PROBABILITY:-INTEGER; -- Should be in the range 0..100.
WHERE TO GO: INTEGER; -- Tells what server to go to.
NEXT: D3ITRIBUTIONLIST; -- Pointer to list.

end record;

-- Every server has a distribution list associated with it, each
-- node containing the number of a server that can be reached from
-- this server and the probability that it will go there.

type SERVER TYPE;
type SERVER-LIST TYPE is access SERVER TYPE;
type SERVER-TYPE-is record

SERVER-ID: INTEGER; -- Unique server id.
NUM PATHS: INTEGER; -- Number of .ranches to other servers.
DISTRIBUTION: DISTRIBUTIONLIST; -- A list, each node of which

-- contains the name of one server
-- that can be reached from here,
-- and the probability that it will
-- go there.

ASTLOW, ASTHIGH: INTEGER; -- Min/Max service time for this server.

System Manual Page S-15

UTILIZATION: FLOAT; -- Server utilization.
AVERAGE TIME PER ENTRY: FLOAT;
NUMBER OF ENTRIES, MAX CONTENTS, CURRENT CONTENTS, CAPACITY: INTEGER;
AVERAGE CONTENTS: FLOAT;
TOTAL CUNTENTS : INTEGER;
REQUESTORSWAITING: INTEGER; -- number of requestors that are

-- waiting on the queue. It probably
-- duplicates current contents.

LAST-DEPARTURE: BOOLEAN; -- Set to TRUE if the last departure from
-- this server has been scheduled, FALSE
-- otherwise.

TOTALAST: INTEGER; -- Sum of all the service times for every entry
-- in the server. Divide by number of entries
-- to obtain the average time per entry.

I3 NEXT: SERVER LIST TYPE; -- Pointer to list.
WAITQ : QUEUETYPE; -- Pointer to the queue holding the waiting

-- requestors.
PROCESSQ: REQUESTLINK; -- A queue to hold the requestors in process.
WHAT-KIND: PROBABILITY-DISTRIBUTION; -- Tells whether this server

-- has an exponential, uniform,

-- discrete or normal distribution
-- for its service times.

end record;
-- Describes a server.

type SYSTEM TYPE is record
SAMPLES: INTEGER; -- The number of samples gathered.
SERVER COUNT: INTEGER; -- Number of servers
CLOCK: INTEGER; -- Simulation clock
STOPTIME: INTEGER; -- stop-simulation time
HIGHEST SERVER: INTEGER; -- Highest server number.
IATLOW,-IATHIGH: INTEGER; -- Lowest and highest arrival times.
REQUESTSPROCESSED: INTEGER; -- Number of requestors that have passed

-- through the system.
TOTALREQUESTORS: INTEGER; -- Total number of requestors that should

-- be processed before the simulation
-- terminates. This field only makes sense
-- if the STOPCONDITION - REQUESTORS.

ARRIVAL GENERATED, SERVER CREATED, SIMULATION RUN : BOOLEAN:
-- Checks to see whether a simulation can be run
-- safely. A simulation cannot run if an
-- initial arrival event has not been put on the
-- event queue. Thus, ARRIVAL GENERATED must be
-- TRUE. Similarly, we must have at least one
-- server in the system. Thus, SERVER CREATED must
-- be TRUE. Finally, the program cannot be
-- run if the data structures are still 'dirty' from
-- a previous run. Thus, SIMULATION RUN must be
-- FALSE. Also, PRINT STATS cannot execute if

-- a simulation has not been run, and so PRINT STATS
-- will not work unless SIMULATION-RUN is TRUE:

DISTRIBUTION TYPE: PROBABILITY DISTRIBUTION;
-- Tells what random number function to usel -- forthearrival times.

System Manual Page S-16

CONDITION: STOPTYPE; -- Describes what condition will terminate the
-- simulation under normal circumstances.

3' ITEM, HEAD, LAST-EVENT: SCHEDULELINK; Pointers to the list
of events. ITEM is more or

-- less a dummy variable while
-- HEAD points to the beginning
-- of the list and LAST EVENT
-- points to an event just after
-- it is removed from the head of
-- the list. It will be used for
-- determining which server the last
-- event took place at.

end record;

o- contains all data used by the simulation system
-- but not associated with either requestors or servers.U

3 package body SIMPACK is
SERVLIST, CURRENT SERVER : SERVER LIST TYPE;

-- A lilt of servers, and a pointer to the current server.
SYS : SYSTEM TYPE;

-- A global variable containing information about the
-- system in general.

ERROR, FINISHED: BOOLEAN :- FALSE;
-- ERROR is used by START SIMULATION to determine if
-- the error message "queue time has reached MAXINT" has been
-- printed out. FINISHED is set to TRUE when the simulation is
-- finished, and is FALSE the rest of the time.

Figure 5 - Specification of the Data Types and the Package's Global Variables

I
3.0 SYSTEM ARCHITECTURE:

It is now time to describe the operation of the program. In order to do this I ask

you to visualize three object types, if you can: SERVERS, REQUESTORS, and EVENTS.
Figure 7 shows the concept of a server.

I
I
I
I

ISystem Manual Page S-17

SERVER

Watn3uu Distribution list

Waitng ueu
Processing queueII,

References to other servers

(These are NOT access types. Rather, they are integer numbers
which identify servers by their tSERVER-ID fields)

Figure 6 - The Concept of a Server

II

5 3.1 SERVERS

Server characteristics:
Distribution of service times
Minimum/Mean distribution time

Maximum distribution (Applicable only to uniform
distributio ns)
Server capacity.
Number of paths to other servers
A pointer to a linked list. Each field of the linked
list contains a number identifying a server and a number
between 0 and 100 telling how likely it is that a
specific requestor will go to that server.

Server Statistics:
Server utilization
Average time per entry.
Number of entries.
Maximum and current server contents.
Average contents.

Other: SOeTotal server contents (used to calculate average
contents).

Flag to determine whether the last departure from this
server has been scheduled or not (this is determined to
occur if the time on the clock + the calculated service
time is greater than the simulation time to stop and
SYS.CONDITION - ATIME). If this flag is set to true
that will mean that the server will be busy until the
end of the simulation. This means that the calculation
of the total in-use server time (which is part of the
calculation of the average time per entry for this
server) will have to be modified: Instead of simply
adding the service time for this server to it we
must add (simulation stop time - current time).

Total service time (the sum of the service times for
all requestors that have been
serviced here. It is used to
calculate the average time per
entry).

System Manual Page S-18

I
I

Server ID (an integer number. Servers are numbered
with the first servers created first.
Note that the server ordering must be
continuous -- if there is a server 6 therei must also be servers 1, 2, 3, 4 and 5).

A waiting queue where requestors waiting to be processed
by this server will be stored, and a processing queue
where requestors being serviced are stored before they
leave.

The reason for the process queue is that it is sometimes convenient to hold the data
concerning requestors while they are in process. When we want to know what the
current contents of the server are we simply count the contents of the queue. Also,
in this package we decide where a requestor should go next when they arrive, rather
than when they depart. Thus, we need to record the destination (WHERENEXT) field
between arrival and departure events. So we store it on this process queue so we
will know where to send it after the server finishes with it. This is an example of
a feature that proved more useful at the time when we first created this program but
has since been made almost useless due to the many changes that have been made to
this program.

e statistics:Maximum, current and average queue contents.
Total number of queue entries.

Number of zero-time queue entries.
Average time in the queue.

Other: Total time in the queue. (Used to calculate the average time in the
I queue).

I
3.2 REQUESTORS

I Requestors have two fields and a NEXT field because they are designed to be
part of a linked list.

WHERENEXT: Tells where a requestor should go after it leaves the
server it is now at. This field is an integer value
such that 2 means go to server #2, 1 to server #1, etc.
A 0 value in this field means that the requestor is toI leave the system when it leaves the current server.

Creation time: Records the time at which it was created.

Note that a requestor which is new to the system must always arrive first at
server #1.

I
I
I System Manual Page S-19

3.3 EVENTS

I Events are stored on the event queue, which is a part of the SYS global variable.

An event is described by six pieces of information:

CLASS: EVENTCLASS; -- type of event, which can be an ARRIVAL,
DEPARTURE, SAMPLE, or the simulation termination
(STOPSIMULATION).

ACTIVATETIME: INTEGER; -- when event should occur
MAX ARRIVAL TIME:INTEGER;
MIN ARRIVAL-TIME: INTEGER;
WHEREAMI :-INTEGER; -- Used to tell which server the current event

-- is occurring at.
FROM SERVER: BOOLEAN; -- Tells whether the last event

-- was from a server or not (This onlyI -- makes sense if the last event was an arrival).

There is also a NEXT field, since an EVENT is meant to be stored on a linkedlist.

MAX and MIN ARRIVAL TIME is used only when we are scheduling the initial arrival
event. They-appear lo have outlived their usefulness and shculd probably be
removed.

3.4 OPERATIONS ON DATA OBJECTS

I SERVERS, REQUESTORS and EVENTS are merely static data objects that are modified and
moved around by the program. The procedure that decides how these objects are handled
is START-SIMULATION.

1 3.4.1 START-SIMULATION

Requirements for START SIMULATION:
1. The necessary data structures must exist and they must be "clean."
2. An initial arrival event must be on the event queue.
3. At least one server must be on the server list.
4. Time for simulation must be greater than zero, if the ending condition

is either STARVE or TIME. If it isn't the number of requestors that must
leave the system before termination must be greater than zero.

5. There must be the RIGHT number of servers. An exception will be generated
if, for instance, a user creates pointers to seven servers but onlyI generates four.

Results of START SIMULATION:
A simulation has now been run to completion, and a bunch of statistics are now stored
with each server, with the queue associated with each server, and in the system
global variable. They are printed out by PRINTSTATS.

g START-SIMULATION performs the following loop until the simulation terminates:

SSystem Manual Page S-20

I

while not FINISHED loop
if SYS.HEAD /- null and SYS.CLOCK < SYS.HEAD.ACTIVATETIME
t4henSYS.CLOCK SYS.HEAD.ACTIVATETIME;

*end if;
if SYS.REQUESTSPROCESSED -= SYS.TOTAL_REQUESTORS-I

and SYS.CONDITION - REQUESTORS then
SYS.STOPTIME :- SYS.LASTEVENT.ACTIVATETIME; -- May be wrong.
FINISHED :- TRUE;

elsif SYS.HEAD.CLASS - ARRIVE then
SYS.LAST EVENT :- SYS.HEAD;
SYS.HEAD :- SYS.HEAD.NEXT; -- remove top node
HANDLE-ARRIVAL;

elsif SYS.HEAD.CLASS - DEPART then
SYS.LAST EVENT :- SYS.HEAD;
SYS.HEAD :- SYS.HEAD.NEXT;
HANDLE DEPARTURE;

elsif SYS.HEAD.CLASS - STOPSIMULATION then
SYS.STOPTIME :- SYS.HEAD.ACTIVATETIME;
SYS.HEAD :- SYS.HEAD.NEXT;
FINISHED :- TRUE;

elsif SYS.HEAD.CLASS - SAMPLE then
SYS.HEAD := SYS.HEAD.NEXT;
if SYS.CLOCK > SYS.STOPTIME and SYS.CONDITION - STARVE then

FINISHED : TRUE;
SYS.ITEM SYS.HEAD;
-- This next loop determines whether the system has starved
-- or not. What we do is check every item on the event queue
-- and if there are no arrivals or departures on the queue
-- then the system has starved and the simulation should
-- terminate.
while SYS.ITEM /- null loop

if SYS.ITEM.CLASS - ARRIVE or SYS.ITEM.CLASS - DEPART then
FINISHED :- FALSE;

end if;
SYS.ITEM :- SYS.ITEM.NEXT;

end loop;
end if;
if not FINISHED then
for COUNTER in 1..SYS.SERVER COUNT loop
CURRENT SERVER :- SERV FINDiTH (SERV LIST, COUNTER);
CURRENT SERVER.WAIT Q.TOTAL QCONTENTS :-

CURRENT SERVER.Wý11TQ.TOTAL QCONTENTS +
CURRENT SERVER.WAIT Q.CURRERT QCONTENTS;

CURRENT SERVER.TOTAL CONTENTS :--CURRENT SERVER.TOTALCONTENTS +
CURRENT SERVER.CURRENT CONTENTS;

end loop;

SYS.SAMPLES :- SYS.SAMPLES + 1;
SYS.ITEM :- new

SCHEDULENODE'(SAMPLE,SYS.CLOCK+SINTERVAL,O,O,O,FALSE,null);
EVENTINSERT (SYS.ITEM, SYS.HEAD);

end if; -- if we are not finished in sample.
end if; -- of the outermost if.

end loop;

I Figure 7 - STATSIMULATION Loop

I System Manual Page S-21

Someone is bound to ask "what is the rationale for the SAMPLE event ?" Well, some of
the statistics that we collate, such as average server contents, are measures over
time. It seemed silly to check every server every time unit to see what contents
they held, and them up and divide by the time at the end to get the average.
Instead, we check them at fixed time intervals, and after the simulation is over we
divide by the number of samples to get the average for these statistics. The
statistics that must be checked this way are the average contents of a server and the
average contents of a queue associated with a server.

Following is Figure 8, which contains the subprograms called by the loop in Figure
7.

-- This procedure handles an arrival when it occurs. The first thing
-- it does is find out which server the arrival event is occurring at and
-- make it the current server. Next, it checks to see whether the arrival
-- event has just occurred at server I. If it has, and it has just been
-- generated as opposed to being directed there from another server, the
-- next arrival at server one from outside the system is scheduled.
-- Statistics are then updated. If the current server can process
-- the requestor, SCHEDULE DEPARTURE is called.
-- In case of an exception- PROGRAM ERROR is propagated to the calling unit.
procedure HANDLE ARRIVAL is

REQUESTOR: REZUESTLINK :- null;
NUM ARRIVE: INTEGER :- 0;
IAT-: INTEGER :- 0;

begin
CURRENT-SERVER :- SERVYFINDITH (SERV_LIST,SYS.LASTEVENT.WHERE_AMI);

if SYS.LAST EVENT.WHERE AMI - 1 and not SYS.LAST EVENT.FROM SERVER then
if not (SYS.CONDITIOR - STARVE and SYS.CLOCK 5 SYS.STOPTTME) then

IAT :- GENERATE (SYS.IATLOW, SYS.IATHIGH. SYS.DISTRIBUTION TYPE);
SCHEDULE ARRIVAL (I, IAT, FALSE);

else PUT ('"borted new scheduled departure.'); NEW LINE;
end if;

end if;

REQUESTOR :- new REQUESTNODE'(O,SYS.CLOCK.null);
REQUESTOR.WHERE NEXT :- SET DESTINATION (REQUESTOR, CURRENT SERVER)-
CURRENT SERVER T- SERV FINDTTH (SERV LIST, SYS.LAST EVENT.WiEREAMII;
INQUEUE-(REQUESTOR, CURRENTSERVER.WAITQ.Q_PTR); -

CURRENT SERVER.WAIT Q.TOTAL QENTRIES :- CURRENT SERVER.WAIT Q.TOTAL QENTRIES + 1;
CURRENT:SERVER.WAITrQ.CURRERT_QCONTENTS :- QCONTENTS (CURRERTSERVET.WAIT Q.QPTR);

if CURRENT SERVER.WAIT Q.CURRENT QCONTENTS > CURRENT SERVER.WAIT Q.MAX QCONTENTS then
CURRENT SERVER.WAIT_Q.MAXQCONTENTS :- CURRENTSERVER.WAIT_Q.CURRENIFQCONTENTS;

end if; -

if (CURRENT SERVER.CURRENT CONTENTS < CURRENT SERVER.CAPACITY) then
SCHEDULE DEPARTURE; -
REQUESTOR :- new REQUESTNODE;

REQUESTOR.WHERE NEXT :- CURRENT SERVER.WAIT Q.Q PTR.WHERE NEXT;
REQUESTOR.CREATTONTIME :- CURRERTSERVER.WATT Q7Q PTR.CREATIONTIME;
REQUESTOR.NEXT :- null;

INQUEUE (REQUESTOR. CURRENT SERVER.PROCESS Q);
CURRENT SERVER.WAIT Q.Q PTR-:- CURRENT SERVER.WAIT Q.Q PTR.NEXT;
CURRENF-SERVER.CURRENT-CONTENTS :- QCORTENTS (CURRENTSERVER.PROCESSQ);

if CURRENT SERVEk.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then
CURRENT-SERVER.MAX CONTENTS :- CURRENT SERVER.CURRENT CONTENTS;

end if;

CURRENT SERVER.WAIT Q.CURRENTQCONTENTS :- QCONTENTS (CURRENT SERVER.WAITQ.QPTR);
-- remove from queui.

else -- if the server is busy.
CURRENTSERVER.REQUESTORSWAITING :- QCONTENTS (CURRENTSERVER.WAITQ.QPTR);

end if; -- if server not busy
exception
when others =>

PUT ('HANDLE ARRIVAL has failed.'); NEW-LINE;
raise PROGRAM ERROR;

end HANDLE ARRIVAL7

System Manual Page S-22

-- This procedure handles the departure of requestors
-- from a server. The first thing it does is to find out where
-- the departure event is supposed to occur, and make that the current
-- server. Having done this, it kicks the first requestor on the "processing"
-- queue off and updates all statistics associated with this event. Next.
-- if there are any requestors on the queue waiting to be processed it calls
-- SCHEDULE DEPARTURE to pull one off the waiting queue and start processing
-- it. In the event of an exception PROGRAMERROR will be propagated to the
-- calling unit.

procedure HANDLE DEPARTURE is
REQUESTOR: REýUESTLINK :- null;
NUM ARRIVE: INTEGER :- 0;
DUM1RY: INTEGER; -- UNNECESSARY IN FINAL PRODUCT.
HUGE1, HUGE2. HUGE3: INTEGER 32;

begin

CURRENT SERVER :- SERV FINDITH (SERV LIST, SYS.LAST EVENT.WHEREA/1);
DUMMY :; QCONTENTS (CURRENTSERVER.WXIT_Q.QPTR);

if CURRENT SERVER.PROCESS Q.WHERE NEXT /- 0 then
SCHEDULE-ARRIVAL (CURRERT_SERVER.PROCESSQ.WHERENEXT,O. TRUE);

else
SYS.REQUESTS PROCESSED :- SYS.REQUESTSPROCESSED + 1;

end if; -

CURRENT SERVER.PROCESS Q :- CURRENT SERVER.PROCESS Q.NEXT;
CURRENT-ERVER.CURRENT•CONTENTS :- qCONTENTS (CURRENT_SERVER.PROCESSQ);

-- This probably won't happen here, because we are removing, and a shrinkage
-- will not exceed the maximum. RECOMMEND REMOVAL.

if CURRENT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then
CURRENT-SERVER.MAX CONTENTS :- CURRENT SEIVER.CURRENT CONTENTS;

end if; .

-- END REMOVAL.

if CURRENT SERVER.REQUESTORS WAITING > 0 then
SCHEDULE DEPARTURE;-
REQUESTOR :- new REQUESTNODE;

REQUESTOR.WHERE NEXT :- CURRENT SERVER.WAIT Q.Q PTR.WHERE NEXT;
REQUESTOR.CREATTONTIME :- CURRERTSERVER.WATTQ.TQPTR.CDEATIONTIME;
REQUESTOR.NEXT :- null;

INQUEUE (REQUESTOR, CURRENT SERVER.PROCESS Q);
CURRENT SERVER.CURRENT CONTENTS :- QCONTENTS (CURRENT SERVER.PROCESSQ);
if CURRENT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then

CURRENT-SERVER.MAXCONTENTS :- CURRENTSERVER.CURRENT CONTENTS;
end if;
CURRENT SERVER.WAIT Q.Q PTR :- CURRENT SERVER.WAIT Q.Q PTR.NEXT;
CURRENT-SERVER.WAIT-Q.CURRENTQCONTENTS :- QCONTENTS (CURRENTSERVER.WAITQ.QPTR);
-- remove from queui.

CURRENTSERVER.REQUESTORSWAITING :- QCONTENTS (CURRENT SERVER.WAITQ.QPTR);end if; --

exception
when others ->

PUT ('HANDLE DEPARTURE has failed. "); NEW LINE;
raise PROGRAR ERROR.

end HANDLE-DEPARTURE;

Figure 8 - Listing of Subprograms Called by the Loop in START-SIMULATION

System Manual Page S-23

I
Following Is Figure 9, which contains listings of the subprograms called by
START SIMULATION:

Almost the first thing SCHEDULE DEPARTURE does is check to see
-i if it CAN schedule a departure 7- if the service time + the current
-- time is greater than the time when the simulation stops (if time is the
-- stop condition for the simulation), it should not schedule a departure.
-- If the program finds that it cannot schedule a departure, it sets a flag
-- on the current server called LAST DEPARTURE, telling itself that the
-- server will be busy with an object until the simulation terminates.
-- On the other hand, if the event passes the above test,
-_ SCHEDULE DEPARTURE schedules a departure event for the first
-- requestoF on the current server's waiting queue. Having done this,
-- it moves the requestor from the current server's waiting queue to the
-- current server's processing queue, where requestors that are being processed
-- are stored. It then updates statistics both for the current server and for
-- the current server's queue. If an exception occurs PROGRAM ERROR is
-- propagated to the calling unit.

-- The procedure also checks to see if total queue time has reached MAXINT-- (32767) if it does. than the simulation is prematurely terminated.

This is the only value checked here for this occurrence because
mthis field grew much faster than the other fields during testing.

procedure SCHEDULE DEPARTURE is
AST: INTEGER :- O;-
BIGi, BIG2, BIG3: INTEGER 32;begin

AST :- GENERATE (CURRENTSERVER.ASTLOW, CURRENTSERVER.ASTHIGH, CURRENTSERVER.WHAT_KIND);

if (SYS.CLOCK+AST < SYS.STOPTIME) or (SYS.CONDITION /- ATIME) then
SYS.ITEM :- new SCHEDULENODE;
SYS.ITEM.CLASS :- DEPART;
SYS.ITEM.ACTIVATETIME :- AST + SYS.CLOCK;
SYS.ITEM.MAX ARRIVAL TIME AST;
SYS.ITEM.MIN-ARRIVAL-TIME - 0;
SYS.ITEM.WHERE AMI :; SYS.LAST EVENT.WHEREAMI;
SYS.ITEM.FROM _ERVER :- TRUE; -
SYS.ITEM.NEXT-:- null;

CURRENT SERVER.TOTALAST :- CURRENT SERVER.TOTALAST + AST;
EVENT INSERT (SYS.ITEM. SYS.HEAD);-

elsif not CURRENT SERVER.LAST DEPARTURE then

CURRENT SERVER.LAST DEPARTURE :- TRUE;
CURRERTSERVER.TOTALAST :- CURRENT SERVER.TOTALAST +

(SYS.STOPTIME - SYS.CLOCK);

end if-,

BIGI INTEGER 32 (CURRENT SERVER.WAITQ.TOTALQTIME);
BIG2 : INTEGER-32 (SYS.CLOCK);
BIG3 :- INTEGER-32 (CURRENT SERVER.WAIT Q.Q PTR.CREATIONTIME);
if BIGi + (BIG27 BIG3) < 2 '* 15 - 1 thin-

CURRENTSERVER.WAIT Q.TOTAL QTIME :- CURRENT SERVER.WAIT Q.TOTAL QTIME +

- (SYS.CLOCK - CURRENT SERVER.WATTQ.Q PTR.CREATIONTTME);else
CURRENT SERVER.WAIT Q.TOTALQTIME :- 2 1* 15 - 1;
FINISHEU :- TRUE;
if not ERROR then
PUT ('The total queue time has just gotten as large as MAXINT.'); NEWLINE;
PUT ('The program will be terminated prematurely.);
ERROR :- TRUE;
end if;

end if;
if (SYS.CLOCK - CURRENT SERVER.WAIT Q.Q PTR.CREATIONTIME) - 0 then

CURRENT SERVER.WAIT Q.ZERO QENTRTES -- CURRENT SERVER.WAIT Q.ZERO QENTRIES + 1;end if; ...

CURRENT SERVER.CURRENT CONTENTS :- QCONTENTS (CURRENT SERVER.PROCESS Q);
CURRENT-SERVER.NUMBER OF ENTRIES :- CURRENT SERVER.NURBER OF ENTRIES-+ t;
if CURRENT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTFENTS then

CURRENT-SERVER.MAX CONTENTS :- CURRENTSERVER.CURRENTCONTENTS;
end if; -

exception
when others ->
PUT ('SCHEDULE DEPARTURE has failed. "); NEW LINE;
raise PROGRAM ERROR;
end SCHEDULEDEPARTURE;1

ISystem Manual Page S-24

An incredibly trivial procedure. It schedules an arrival
-- a. server INDEX, to occur after ARRIVAL time units have
-- elapsed after the current time. If the requestor is departing
-- from a server. FROM SERV is TRUE, else FALSE.

mrocedure SCHEDULEARRIVAL (INDEX: in INTEGER; ARRIVAL: in INTEGER; FROM SERV: BOOLEAN) isI SYS.ITEM :- new SCHEOULENODE'(ARRIVEARRIVAL+SYS.CLOCKO,O,INDEXFROM_SERV.null);

EVENT INSERT (SYS.ITEM, SYS.HEAD);
exception -
when others ->

PUT ("SCHEDULE ARRIVAL has failed. "); NEW LINE;
end SCHEDULE-ARRIVAt;

Figure 9 - Listings of Subprograms Called by the Loop in START-SIMULATION

The various insertion procedures are not listed here, because they are simple linked
list functions. The same goes for SERVFINDITH.

I
* 4.0 OUTPUT

All output is sent to standard output, and if all goes well then the only procedure

that will print out anything is PRINT STATS, which prints out the statistics we have
deemed to be of interest to the user.-Of course, most of the subprograms do print out
some kind of message if an error occurs in them, but with any luck the only message
you will see will be from PRINT STATS. Figure 10 contains the code for PRINT STATS.

I

I
m
I
m

I
1 System Manual Page S-25

-- This procedure prints out the statistics of interest to a user.
-- it may only be used after a simulation is run.
procedure PRINT STATS is
NO SIMULATION :-EXCEPTION;
beg-in

S ~if not SYS.SIMULATION RUN then

raise NOSIMULATION;
end if;

PUT ("Simulation Stopped at Time: "); PUT (SYS.CLOCK);
NEW LINE;
CURRENT SERVER := SERV LIST;
PUT (SYS.SERVER COUNT)T PUT (" servers in this run.*); NEW LINE;
PUT ("SERVER tAPACITY ENTRIES AVG. TIME MAX CURRENT AVG. UTIL. ");
NEW LINE;
PUT-(' PER ENTRY
NEW LINE;
PUT-(" CONTENTS
NEW LINE;
for-COUNT in 1..SYS.SERVER COUNT loop

PUT (CURRENT SERVER.SERVER ID.2);
PUT (CURRENT-SERVER.CAPACITY,12);
PUT (CURRENT-SERVER.NUMBER OF ENTRIES,9);
PUT (CURRENT-SERVER.AVERAGE TTME PER ENTRYTO);
PUT (CURRENT-SERVER.MAX CONTENTST8);-
PUT (CURRENT-SERVER.CURRENT CONTENTS,7);
PUT (CURRENT-SERVER.AVERAGE-CONTENTS,9);
PUT (CURRENT-SERVER.UTILIZATION*io0.O.11); PUT (" %"); NEW LINE;
CURRENTSERVER := CURRENT SERVER.NEXT;

end loop;

CURRENT SERVER := SERV LIST;
NEW LINE; NEW LINE; NEW LINE; NEW LINE;
PUT-('QUEUE -ENTRIES O-ENTRIES- AVG. TIME MAX. CURRENT AVG.');
NEW LINE;
PUT-(- CONTENTS
NEW LINE; NEW LINE;
for-COUNT in T..SYS.SERVER COUNT loop
PUT (CURRENT SERVER.SERVER-ID,2);
PUT (CURRENT-SERVER.WAIT Q.TOTAL QENTRIES,12);
PUT (CURRENT-SERVER.WAIT-Q.ZERO qENTRIES,12);
PUT (CURRENT-SERVER.WAIT-Q.AVERAGE QTIME,9);
PUT (CURRENT-SERVER.WAIT-Q.MAX QCORTENTS,lO);
PUT (CURRENT-SERVER.WAIT Q.CURAENT QCONTENTS,9);
PUT (CURRENT-SERVER.WAIT-Q.AVERAGE-QCONTENTS,9);
NEW LINE;
CURRENT SERVER := CURRENT SERVER.NEXT;
end loop;
NEWLINE; NEW-LINE; NEWLINE; NEWLINE;

exception
when NO SIMULATION =>

PUT ("You must run a simulation before I can print out any statistic,.");
NEW LINE;
PUT-('PRINT_STATS procedure failed."); NEWLINE;

when others =>
PUT ("PRINTSTATS procedure failed.'); NEWLINE;

end PRINT STATS;

Figure 10 - Listing for Procedure PRINTSTATS

I
I
I

System Manual Page S-26

I
I

5.0 SIMULATION TERMINATION:

Normal Simulation termination occurs when:

1. A specified time has elapsed. This condition is set by the user
in the input file, and should only occur if the user explicitly
sets the condition to ATIME in the input file.

2. A specified number of requestors have left the system. Again, this
condition is explicitly set by the user and should only occur if it is
told to.

3. The system starves. By this I mean that it processes all the requestors in
the system and no more requestors are arriving.

Abnormal simulation termination occurs when:

Total queue time reaches MAXINT (32767). When this happens the simulation is stopped
and all the statistics to date are printed out.

The simulation is aborted when:
1. The user gives funny input (numbers where there should be letters, that sort

of thing).
2. There isn't an input file.
3. The user forgets to describe a server in the input file.
4. There aren't enough servers. (This can happen because all servers are

strictly ordered 1 .. whatever. If there is a server # 5 then there must
also be servers 1, 2, 3, and 4. If a user sets a pointer to server # 6
but only creates three servers, then the simulation would abort).

5. Faulty input data (as opposed to just "funny" input. The difference here
is that instead of just giving spurious characters, the user is giving
the program correct but absurd data, such as a time to run of 0, or a
capacity of 0).

System Manual Page S-27

•I l i I I I

APPENDIX A: STATISTICS GATHERED

For the system:
1. Simulation ending time.

The user can directly specify an ending time or starvation time, and it
is recorded here. If the user specifies that a certain number of requestors
should pass through the system instead that is recorded in
SYS.TOTALREQUESTORS.

In either case, the last time on the clock is placed in SYS.STOPTIME after
the simulation terminates. This occurs in STARTSIMULATION.

2. Number of servers used:
This is stored in SYS.SERVER COUNT. It is incremented every time
a new server is created by CREATE SERVER.

Server statistics:

1. The server ID. This is assigned by CREATE SERVER based on when it was
created. The first server created is number one, the second is number 2,
and so on. Note that a new requester must always arrive at server number
1, and that there can only be one server on the same level as server #1.

2. Server capacity. This is set by the CREATESERVER procedure, and is read
in from the input file. A capacity must always be greater than zero.

3. Number of entries on a server. This is initialized to 0 by CREATE SERVER,
and after that it is incremented whenever a requestor moves off a-server's
waiting queue and onto its process queue. Since SCHEDULE DEPARTURE is called
only when this happens, the update is placed in that procedure.

4. Average time per entry. This is initialized to zero by CREATE SERVER, and
is found after the end of the simulation by dividing the sum of all the
service times at this server by the number of entries.

The sum of all the service times is initialized to 0 by CREATE SERVER.
Every time a server accepts a requestor for processing (this occurs in
SCHEDULE DEPARTURE when a requestor is moved from the waiting queue to
the processing queue) we add the time it will take to serve this requestor
to the sum. If the simulation will end before the requestor can be

completely serviced we add the sum (termination time - current time).

5. Current contents of a server. This is a counter of how many things are being
processed by the server, and is obtained by counting the number of things
on the server's processing queue using the QCONTENTS function. The value is
Initialized to 0 and is updated

A. In the SCHEDULE DEPARTURE procedure.
B. In HANDLE ARRIVAL, when a requestor is taken off a waiting

queue and placed in processing.
C. Twice in HANDLE DEPARTURE. Once when we take something off

the server (when a requestor departs), and a second time
if there are requestors waiting and they are immediately
put into process.

6. Maximum contents of a server. This is initialized to 0, and afterwards every
time the current contents field is updated we compare the new value to the
MAX CONTENTS field. If the value of CURRENT CONTENTS is greater than the
value in MAX-CONTENTS then we set MAX-CONTENTS equal to CURRENT-CONTENTS.

System Manual Page S-28

7. Average contents of a server. Initialized to zero, we sample the value
of current contents every so often. The average contents is equal to the
sum of the sampled values divided by the number of samples. To learn more
about samples see the relevant section on SAMPLING.

8. Server utilization. This is the average contents of the server divided by
its capacity.

All of the above is part of SERVER TYPE, which is a record describing a single
server. In addition, there is also a QUEUE TYPE record that is part of SERVER-TYPE,
which describes a queue attached to that server.
Most of the statistics are initialized to zero in the procedure RESET or
as part of CREATE SERVER.

I Queue Statistics:

1. Queue ID. Since every queue is part of a server's record, a queue ID
is simply the ID of the seiver it is attached to.

2. Number of entries on the queue. Recorded in the TOTAL QENTRIES field, it
is initialized to zero and is incremented every time a-new requestor arrives
at a queue. This is an arrival event and is handled by the HANDLEARRIVALprocedure.

3. Zero Entries. These are the entries on the queue that left the queue the
instant they arrived. This is determined to have occurred if, when a
requestor is pulled of the waiting queue, the value of it's creation time
minus the value of the system clock is zero. This value is initialized to
zero and it is changed only in SCHEDULE DEPARTURE, which is always called
when a requestor is moved off the waiting queue.

4. Average time on the queue. This is calculated after the simulation by the
sum of all the times on the queue (stored in TOTAL QTIME) divided by the
number of entries. TOTAL QTIME is initialized to zero, and after that is
increased every time schedule departure is called by
TOTALQTIME :- TOTALQTIME + (SYS.CLOCK - the first thing on the queue's

creation time);
At the end of the simulation we also add up the wait times for the things
that are still on the queue.

Note that TOTAL QTIME grows very quickly, in all our testing runs much more
quickly than anything else. Thus, all our checks to see if a value has
grown too large are checked against this value.

5. Current contents of the queue. We get this by counting all the objects on
the queue using the QCONTENTS function. We make this change every time we
change the length of the queue. That is, whenever an arrival or departure
occurs so look for this statistic to be changed in HANDLEARRIVAL and
HANDLE DEPARTURE.

6. Maximum contents of the queue. This statistic is almost the same as its
counterpart in the server statistics. As before, MAX QCONTENTS is based on
and update of CURRENT QCONTENTS, and if CURRENT QCONTENTS is larger than
MAX QCONTENTS :- CURRENT QCONTENTS. The differince is that MAX CONTENTS
for a server is checked whenever a server's CURRENT CONTENTS are changed,

System Manual Page S-29

I
I

period. However, the handling for queues is a little smarter in that we
know not to check something when something is being pulled off the queue,
since when a subtraction occurs it cannot increase above the maximum.

7. Average queue contents. This is checked the same way as server average
contents: Every so often we sample the value of queue's current contents,
and after the simulation terminates the average queue contents is equal
to the sum of the sampled values divided by the number of samples. Again,
see SAMPLING for more details on sampling.

All of the queue statistics are part of QUEUE TYPE, and most are initialized
to zero by CREATE SERVER (a queue and its statistics are initialized at the
same time as the server to which it is attached).

Sa

llIl

I
APPENDIX Bi OTHER ITEMS OF INTEREST

GENERATION OF RANDOM NUMBERS

All requests for a random number call procedure GENERATE, passing variables LOW,
HIGH, and WHAT KIND. LOW and HIGH specify the range LOW..HIGH in which the random
number may be generated. WHAT KIND specifies whether the random number should be
distributed uniformly or exponentially. In the event that WHAT KIND is EXPONENTIAL,
LOW will contain the mean value and HIGH will be ignored. We thin call either
UNIFORM FUNC or EXP subprograms (which are in RANOOM.ADA) to generate an appropriaterandom number.

SAMPLING

Sampling is one of the four principle events that may occur during the system. When

a sample occurs, the current values of the queue and the server are added to the
running totals TOTAL-CONTENTS and TOTALQCONTENTS respectively.

How often does a sample occur? If we know that there is a time limit on the
simulation, we use UNIFORM to generate a random interval in the range (simulation
time / 20) .. (simulation time /10). If the ending condition is based on the number- cf requestors, we select a random Interval in the range

(Minimum arrival time * total requestors /20)
(Minimum arrival time * total requestors /10).

Thus, there should usually be between 10 and 20 samples in a simulation, although its
anybody's guess how many there will be if the ending condition is REQUESTORS.
Hopefully, between 10 and 20 is enough to provide a degree of precision without
having to do too much work and slowing the computer down.

The random interval generated is stored in SINTERVAL, and the first sample is
scheduled to occur at SINTERVAL. After that whenever a sample event is handled thenext sample is scheduled to occur at SYS.CLOCK + SINTERVAL. SINTERVAL is a local
variable in START SIMULATION.

THE SIMULATION CLOCK
The simulation clock is not directly based on the hardware clock. Instead, it is an
integer value initialized to zero at procedure RESET. After that, whenever we take
an event off the event queue we set clock equal to the event's activate time. This
occurs during the main loop in procedure START SIMULATION mentioned above.

MAXINT
MAXINT is defined to be 2 ** 15 - 1, or 32767. 1 don't remember when we made the
decision to define it to be this on a 32-bit machine, but there it is. However,
since it IS a 32 bit machine, we are able to check whether MAXINT has been exceeded
very easily. Before we do any addition that we think will exceed the value, we
convert the values to a 32-bit number and add. If the 32-bit number is greater than
MAXINT, then we prematurely terminate the exception, setting the relevant value to
MAXINT. During our testing TOTALQTIME, which is one of QUEUE TYPE's fields, was the
only one to give us this trouble, and consequently is the only-statistic addition
guarded this way. Of course, we also have to watch user input and so we have to
guard the INTGET function too. You can find these checks in subprograms GETINT,
SCHEDULrDEPARTURE and STARTSIMULATION.

Other items of interest about the ý.ystem:
A new requestor in the system must always arrive at server number one. There can
only be one level-i server. After that, you can redirect as you please.

System Manual Page S-31

I
APPENDIX C: KNOWN BUGS

The TOTAL QCONTENTS field of the QUEUE TYPE records seems to grow a trifle quickly.
Aside from that, there are no KNOWN bugs.

However, there is one aspect of the program that will probably cause a lot of

mistakes and this is in the input file. When we describe a uniform-distribution
random number generator we use three pieces of data: the type of RNG, the minimum
value and the maximum value. For instance "u 5 10" tells us that this is a
uniformly-distributed RNG with a minimum possible value of 5 and a maximum of 10.

However, exponentially-distributed RNGs require only TWO pieces of data: the type of
RNG and a mean. For instance, "e 20" tells us that this is an exponentially-
distributed RNG with a mean of 20.

It is very easy to slip up and say "e 20 40" or "u 30" by mistakel Especially since
there are a **LOT** of other numbers on that line, and it is easy to put in an extra
number (or one too few) by mistake.

APPENDIX D: UPGRADES

1. Convert the program so that it entirely uses either 16-bit or 32-bit
operations. A program that operated entirely with 16-bit numbers would
be compatible with machines as old as the 80286, while an entirely 32-bit
program would greatly extend the range of maximum values. The current
mixture of 16- and 32- bit numbers is neither compatible with older
machinery nor is MAXINT very large. (At present, 16-bit numbers are used
everywhere except in calculation of MAXINT, which uses 32-bit numbers.

2. Supply a driver program which would make the creation of a user program
much easier.

3. Make the program error messages more friendly. At this time they are
very terse and do not make much sense to someone who is not familiar
with the source code.

4. Add more types of random number distributions.

5. Allow the program to perform more than one simulation before terminating.

6. Remove REQUESTORSWAITING field from SERVERTYPE data type.

7. Eliminate MAX- and MINARRIVALTIME fields from SCHEDULENODE data type.

8. Have the program give some kind of output during processing, to give
the user some idea of how long the program has been running and how
long the user has to wait before the program terminates.

9. Allow the generation of requestors that take up more than one unit of
a server's capacity. At present, all requestors take up exactly one unit
of a requestor's capacity.

10. Give the simulation the ability to have more than one entry point intoa simulated system. For example, requestors that have just entered the
system could enter at server #5 as well as server #1.

11. Make the simulation execute FASTER.

System Manual Page S-32

I
I

I
I

| Program Listings

I

I
U
I
I
U
I
in

I
with TEXT 10;
with ADA 10; use ADA 10;
with SIMPACK; use SIMPACK;

-- Procedure SIMULATE is the main procedure for this program.
I- It opens the input file SIM.OAT, reads the system data out of it,
-- calls GENERATE ARRIVAL to put an initial arrival event on the queue,
-- calls CREATE SERVER, which creates servers and reads the information
-- associated with them from the open file. SIMULATE then calls
-- START SIMULATION, and if it terminates normally calls PRINT STATS
-- to print the statistics of interest to the user. It then caTls
-- RESET to "clean" the data space and terminates.
-- If it receives an exception from any subprogram it prints out a short

-- message and exits.

-- This is the main program, and it calls CHARGET, INTGET, GENERATE ARRIVAL,
-- CREATE SERVER, START-SIMULATION, PRINTSTATS, and RESET.

procedure SIMULATE is
IATLOW : INTEGER :- -10;
IATHIGH : INTEGER :- -10;
ASTLOW : INTEGER :- 18;
ASTHIGH : INTEGER - 22;
CAPACITY : INTEGER : 1;
TIME: INTEGER :- -1;
START: BOOLEAN :- FALSE;
ANSWER: CHARACTER :- 'a';
CONDITION: STOPTYPE :- ATIME;
HIGHESTSERVER, SERVERCOUNT: INTEGER :- 0;
DIST: PROBABILITY DISTRIBUTION;
INPUTFILE: TEXTIO.FILETYPE;

begin

TEXT IO.OPEN (INPUTFILE, TEXTIO.INFILE,"sim.dat");

while ANSWER /- 'T' and ANSWER /- 't' and ANSWER /- 'R' and ANSWER /- 'r' and
ANSWER /- 's' and ANSWER /- 'S' loop

ANSWER :- CHARGET (INPUTFILE);
end loop;

if ANSWER - 'T' or ANSWER - 't' then
CONDITION : ATIME;

elsif ANSWER 'S' or ANSWER - 's' then
CONDITION : STARVE;

else CONDITION :- REQUESTORS;
end if;

TIME :- INTGET (INPUTFILE);
if TIME - 1 then

PUT ("That time is invalidl"); NEW LINE;
PUT ("Simulation aborted."); NEW_LINE;
raise PROGRAM-ERROR;

end If;

SIMULATE.ADA Page 1

II

I

while ANSWER 1- 'u' and ANSWER /- 'U' and ANSWER 1= 'e' and ANSWER /' 'E' loop
ANSWER : CHARGET (INPUTFILE);

end loop;

if ANSWER = 'e' or ANSWER then
DIST :- EXPONENTIAL;

else DIST := UNIFORM;3 end if;

ANSWER : 'a';
IATLOW : INTGET (INPUTFILE);
if IATLOW < 1 then

PUT ("Arrival times of less than one are not allowed."); NEWLINE;
PUT ("Simulation aborted."); NEWLINE;
raise PROGRAM-ERROR;

end if;

if DIST - UNIFORM then
IATHIGH := INTGET (INPUTFILE);
if IATHIGH < 1 then

PUT ("Arrival times of less than one are not allowed."); NEWLINE;3 PUT ("Simulation aborted."); NEW-LINE;
raise PROGRAM-ERROR;

end if;
elseI] IATHIGH :- 2 ** 15 -1;
end if;
GENERATEARRIVAL (IATLOW, IATHIGH, DIST);

while not START loop
CREATE SERVER (HIGHESTSERVER, SERVERCOUNT, INPUTFILE);
if HIGHEST SERVER - SERVER COUNT then1 START :; TRUE;
end if;3 end loop;

TEXTIO.CLOSE (INPUTFILE);

START SIMULATION (DIST, IATLOW, IATHIGH, CONDITION, TIME);I PRINTSTATS;

RESET;
exception

i when TEXT IO.NAME ERROR ->
PUT ("Data file not found."); NEW-LINE;

when others =>I_ PUT ("Simulation aborted."); NEW-LINE;
end SIMULATE;

I

-- SIMULATE.ADA Page 2

I
I

with MATH LIB; use MATHLIB;
package RANDOM is

procedure SET SEED(N : POSITIVE);
function RANDOM UNIT return FLOAT;
-- returns a float >-0.0 and <1.0
function RANDOM INT(N : INTEGER) return INTEGER;
-- return a random integer in the range I..N
function EXP (MEAN: INTEGER) return INTEGER;
-- returns a random integer exponentially distributed on MEAN.
function UNIFORM FUNC(LOW, HIGH: INTEGER) return INTEGER;
-- return a random integer uniformly distributed from LOW to HIGH

end RANDOM;

with CALENDAR;
use CALENDAR;
package body RANDOM is

MODULUS : constant :- 9317;

type INT_16 is range -2 ** 15.. 2 ** 15 - 1;
type INT-32 is range -2** 31 .. 2 *31 - 1;
subtype SEED RANGE is INT 16 range 0 .. (MODULUS - 1);

SEED, DEFAULT SEED : SEED-RANGE;

procedure SETSEED(N : POSITIVE) is separate;
function RANDOM UNIT return FLOAT is separate;
function RANDOM-INT(N : INTEGER) return INTEGER is separate;
function EXP (MEAN:INTEGER) return INTEGER is separate;
function UNIFORM FUNC (LOW, HIGH: INTEGER) return INTEGER is separate;

begin
DEFAULTSEED :- INT_16(INT_32(SECONDS(CLOCK)) mod MODULUS);
SEED :- DEFAULTSEED;

end RANDOM;

I separate(RANDOM)
procedure SETSEED(N : POSITIVE) is
begin

SEED :- SEEDRANGE(N);
end SETSEED;

separate(RANDOM)
function RANDOMUNIT return FLOAT is

MULTIPLIER : constant :- 421;
INCREMENT : constant :- 2073;
RESULT : FLOAT;

begin
SEED :- (MULTIPLIER * SEED + INCREMENT) mod MODULUS;
RESULT :- FLOAT(SEED) / FLOAT(MODULUS);
return RESULT;

exception
when CONSTRAINT ERROR NUMERICERROR ->

SEED :- INT 16((MULTIPLIER * INT 32(SEED) + INCREMENT) mod MODULUS);
RESULT :- FLOAT(SEED) / FLOAT(MODULUS);
return RESULT;

end RANDOMUNIT;

SRANDOM.ADA Page 1

separate(RANDOM)
function RANDOM INT(N : INTEGER) return INTEGER is

RESULT INTEGER range 0 ..

begin
RESULT :- INTEGER(FLOAT(N) "- RANDOM-UNIT + 0.5);
return RESULT;

exception
when CONSTRAINTERROR I NUMERIC-ERROR ->

return 0;
end RANDOMINT;

separate (RANDOM)
function EXP (MEAN:INTEGER) return INTEGER is

TEMP: INTEGER;
FTEMP: FLOAT;

begin
FTEMP : - LN (1.0-RANDOM UNIT);
FTEMP :- FTEMP * FLOAT (MEAN);
TEMP :- INTEGER (FTEMP);
return TEMP;
end EXP;

separate(RANDOM)
function UNIFORMFUNC(LOW,HIGH:INTEGER) return INTEGER is

INTRESULT : INTEGER;
RESULT: INTEGER := 0;
SPREAD: INTEGER;

begin
SPREAD := HIGH - LOW + 1;
if SPREAD < 1 then

SPREAD :- 1;
end if;
RESULT :- INTEGER (RANDOMUNIT*FLOAT(MODULUS)) mod SPREAD;
RESULT := RESULT + LOW;
return RESULT;

end UNIFORMFUNC;

RANDOM.ADA Page 2

-- Package for creating multiple server/multiple queue simulations

-- Authors:
-- Edward L..we

Jeff Cannedy
-- Brian Pendell

--February 1993

with TEXT 10;
package SIMPACK is
type PROBABILITY DISTRIBUTION is (UNIFORM,EXPONENtIAL,NORMAL,DISCRETE);
-- This type telTs what distribution the random number generator will
-- use. Not that NORMAL and DISCRETE remain unimpleminted at this point.

I type itTEGER '2 is range -2 ** 31 .. 2 ** 31 -1;
-- A 32-it Tnteger type. Used only for testing to see if MAXINT
-- (2 *- !6 -1) has been exceeded.

I type EVENTCLASS is (ARRIVE, DEPART, STOPSIMULATION, SAMPLE);

-- An enumerated type describing the different kinds of events
-- that may occur during the simulation. At present, they include:

1. The arrival or departure of a simulation.
-- 2. The termination of the simulation.
S-- 3. The queue sizes and various other things are sampled.

type STOPTYPE is (REQUESTORS, ATIME, STARVE);
-- An enumerated type describing the three different normal exit
-- conditions for the simulation: when a certain number of requestors
-- has left the system, when a certain time is reached on the clock,
-- and starvation, which occurs when after a certain time the system
-- prevents the arrival of any more requestors. The system goes on
-- to finish everything already on the queues and in system, then
-- terminates.

type SCHEDULENODE;
type SCHEDULELINK is access SCHEDULENODE;
type SCHEDULENODE is record

CLASS: EVENTCLASS; -- type of event
ACTIVATETIME: INTEGER; -- when event should occur
MAX ARRIJAL TIME:INTEGER;
MIN-ARRIVAL-TIME: INTEGER;

-- The above two fields are used only in
-- the initial arrival event and appear to have
-- outlived their usefulness.

IWERE AMI : INTEGER; -- Used to tell which server the current event
-- is occurring at.

FROMSERVER: BOOLEAN; -- Tells whether the last event
-- was from a server or not (This only
-- makes sense if the last event was an arrival).

NEXT: SCHEDULELINK; -- pointer for list membership
end record;
-- Describes an event that occurs during the simulation. Since all events
-- are stored on the queue, it has a pointer type associated with it.

type REQUESTNODE;3 type REQUESTLINK is access REQUESTNODE;

I SIMPACK.ADA Page 1

I

type REQUESTNODE is record
WHERE NEXT: INTEGER; -- Tells what server to visit next.
CREATTONTIME: INTEGER; -- When requestor was created.
NEXT: REQUESTLINK; -- Pointer for list membership.

end record;
-- represents a requestor.

type QUEUE TYPE is record
Q PTRT REQUESTLINK; -- A pointer to the queue proper.

1 MAX QCONTENTS: INTEGER; -- Maximum contents.
AVERAGE QCONTENTS: FLOAT; -- Average contents during simulation.
TOTAL QENTRIES: INTEGER; -- Total entries into the queue.
ZERO_QENTRIES: INTEGER; -- Number of entries waiting 0 time in queue.
AVERAGE QTIME: FLOAT; -- Average time in queue during simulation.
TOTALQTIME: INTEGER; -- Total time in queue.

-- This value grows very quickly, and has
-- always been the first to grow above
-- MAXINT during testing.

TOTAL QCONTENTS: INTEGER;
CURRENT QCONTENTS: INTEGER; -- Contents of queue when simulation stops.U end record;

-- contains the data associated with a queue

type DISTRIBUTIONRECORD;
type DISTRIBUTION LIST Is access DISTRIBUTION-RECORD;
type DISTRIBUTION-RECORD is record

PROBABILITY:-INTEGER; -- Should be in the range 0..100.
WHERE TO GO: INTEGER; -- Tells what server to go to.
NEXT:-DIýTRIBUTIONLIST; -- Pointer to list.

end record;

-- Every server has a distribution list associated with it, each
-- node containing the number of a server that can be reached from
-- this server and the probability that it will go there.

type SERVER TYPE;
type SERVER-LIST TYPE Is access SERVERTYPE;
type SERVER-TYPE-is record

SERVER-ID: INTEGER; -- Unique server Id.
NUN PATHS: INTEGER; Number of branches to other servers.
DISTRIBUTION: DISTRIBUTION-LIST; -- A list, each node of which

-- contains the name of one server
-- that can be reached from here,

and the probability that It will
-- go there.

ASTLOW, ASTHIGH: INTEGER; -- Min/Max service time for this server.
UTILIZATION: FLOAT; -- Server utilization.
AVERAGE TIME PER ENTRY: FLOAT;
NUMBER bF ENTRIES, MAX CONTENTS, CURRENT-CONTENTS, CAPACITY: INTEGER;
AVERAGE CUNTENTS: FLOAT;
REQUESTeRSWAITING: INTEGER; -- number of requestors that are

-- waiting on the queue. It probably
-- duplicates current contents.

I LASTDEPARTURE: BOOLEArN; -- Set to TRUE if the last departure from
-- this server has been scheduled, FALSE
-- otherwise.

U SIMPACK.ADA Page 2

TOTALAST: INTEGER; -- Sum of all the service times for every entry
-- in the server. Divide by number of entries
-- to obtain the average time per entry.

NEXT: SERVER LIST TYPE; -- Pointer to list.
WAITQ : QUEUE-TYPE; -- Pointer to the queue holding the waitini

-- requestors.
PROCESS Q: REQUESTLINK; -- A queue to hold the requestors in process.
WHATKIND: PROBABILITYDISTRIBUTION; -- Tells whether this server

-- has an exponential, uniform,
-- discrete or normal distribution
-- for its service times.

end record;
-- Describes a server.

type SYSTEM TYPE is record
SAMPLES: INTEGER; -- The number of samples gathered.
SERVER COUNT: INTEGER; -- Number of servers

CLOCK:-INTEGER; -- Simulation clock
STOPTIME: INTEGER; -- stop-simulation time
HIGHEST SERVER: INTEGER; -- Highest server number.
IATLOW, IATHIGH: INTEGER; -- Lowest and highest arrival times.
REQUESTS-PROCESSED: INTEGER; -- Number of requestors that have passed

-- through the system.
TOTALREQUESTORS: INTEGER; -- Total number of requestors that should

be processed before the simulation

-- terminates. This field only makes sense
if the STOP CONDITION - REQUESTORS.

ARRIVAL-GENERATED, SERVER CREATED, SIMULATION RUN : BOOLEAN;
-- Chicks to see whether i simulation can be run
-- safely. A simulation cannot run if an
-- initial arrival event has not been put on the
-- event queue. Thus, ARRIVAL GENERATED must be
-- TRUE. Similarly, we must hive at least one
-- server in the system. Thus, SERVER CREATED must

-- be TRUE. Finally, the program cannot be
-- run if the data structures are still 'dirty' from
-- a previous run. Thus, SIMULATION RUN must be
-- FALSE. Also, PRINT STATS cannot execute if

-- a simulation has no! been run, and so PRINT STATS
-- will not work unless SIMULATION RUN is TRUE:

DISTRIBUTION TYPE: PROBABILITY DISTRIBUTION;
-- Tells what random number function to use
-- for the arrival times.

CONDITION: STOPTYPE; -- Describes what condition will terminate the
-- simulation under normal circumstances.

ITEM, HEAD, LASTEVENT: SCHEDULELINK; -- Pointers to the list
-- of events. ITEM is more or
-- less a dummy variable while
-- HEAD points to the beginning
-- of the list and LAST EVENT
-- points to an event just after
-- it is removed from the head of

the list. It will be used for
-- determining which server the last
-- event took place at.

SIMPACK.ADA Page 3

end record;

-- contains all data used by the simulation system
-- but not associated with either requestors or servers.

-- Note: All the comments next to each of these subprograms is merely a blurb.
-- For a more complete description, see the corresponding body of the given
-- subprogram in the package body.

function CHARGET (FILE:TEXT IO.FILE TYPE) return CHARACTER;
-- Gets a character from a-file and returns it.

function INTGET (FILE: TEXT IO.FILE TYPE) return INTEGER;
-- Same as CHARGET, but with an integer instead of a character.

function GENERATE (LOW, HIGH: INTEGER; WHATKIND: PROBABILITYDISTRIBUTION)
return INTEGER;
-- This function accepts LOW and HIGH, which describe a boundary
-- for a random number generator, and WHAT KIND, which tell
-- it what distribution, and therefore which random number
-- generator, to use. It returns a random integer in the range
-- LOW .. HIGH. Note that for EXPONENTIAL distributions LOW
-- is treated as the mean and HIGH is ignored.

function SET DESTINATION (REQ: REQUESTLINK; SERVER: SERVERLISTTYPE)
retUrn INTEGER;
-- After a requestor (REQ) has arrived at a server (SERVER),
-- this function is invoked to determine which server the
-- given requestor should visit next. The function returns
-- the ID number of the server to visit.

procedure DIST INSERT (ITEM, LIST: in out DISTRIBUTION LIST);
-- Inserts an ITEM onto LIST.

procedure SERV INSERT (NEWITEM, LISTPTR: in out SERVER LIST TYFK;
OK: in out BOOLEAN);

-- Inserts a new server onto the list of servers, NEWITEM
-- represents the new server and LISTPTR represents the list
-- being inserted onto. OK is set to TRUE if the operation
-- is successful and FALSE otherwise.

function SERV FINDITH (LISTPTR: SERVERLISTTYPE; I: INTEGER)
return SERVER LIST TYPE;
-- This functTon accepts a pointer to a list of servers and
-- an integer I. It returns a pointer to the ITH server.

procedure EVENT INSERT (ITEM, HEAD: in out SCHEDULELINK);
-- ThTs procedure inserts an event ITEM onto the list
-- of events accessed by HEAD.

procedure INQUEUE (ITEM, HEAD: in out REQUESTLINK);
-- Puts a requestor ITEM onto the list of requestors

--accessed by HEAD.

function QCONTENTS (HEAD: REQUESTLINK) return INTEGER;
Counts the number of entries in the queue

-- accessed by head.

procedure SCHEDULE DEPARTURE;
-- Schedules a departure event on the arrival queue. It
-- also moves a requestor off the WAITQ of the current server
-- and onto the PROCESSQ.

SIMPACK.ADA Page 4

procedure SCHEDULE-ARRIVAL (INDEX: in INTEGER; ARRIVAL: in INTEGER;
FROM SERV: BOOLEAN);

-- An incredibly trivial procedure. It schedules an arrival
-- at server INDEX, to occur after ARRIVAL time units have
-- elapsed after the current time. If the requestor is departing
-- from a server, FROMSERV is TRUE, else FALSE.

procedure HANDLE ARRIVAL;
-- Handles an arrival when it occurs. Many side effects involving

-- setting the current server, monkeying with its queues, updating
-- statistics, etc.

procedure HANDLE DEPARTURE;
IS -- as HANDLE-ARRIVAL, except that it handles departures.

procedure GENERATE ARRIVAL (LOW, HIGH : in INTEGER;
DISTRIBUTION: in PROBABILITY DISTRIBUTION);

-- SIDE EFFECT: INSERTS ARRIVAL EVENT ON SCHEDULE QUEUE.
-- This procedure generates the first arrival event, sets

-- the minimum and maximum arrival times for requestors, and
-- also specifies the distribution for the arrival times.

procedure CREATE SERVER (HIGHEST SERVER, SERVER COUNT: out INTEGER;
INPUTFTLE: in TEXTIO1FILETYPE);

-- Creates a server and puts it on the SERVER LIST. It has
-- to get some information to do this from thi input file.

procedure PRINT STATS;
-- PrTnts out the statistics.

procedure START SIMULATION (DISTRIBUTION: in PROBABILITY DISTRIBUTION;
IATLOW, IATHIGH: in INTEGER;
STOP CONDITION: in STOPTYPE;
STOPPER: in INTEGER);

-- Runs the simulation itself.
procedure RESET;

-- Initializes all data to a "clean" state.
end SIMPACK;

with ADA 10; use ADA 10;
with RANDOM; use RANDOM;

package body SIMPACK is
SERVLIST, CURRENT SERVER : SERVER LIST TYPE;

-- A lit of servers, and a pointer to the current server.

SYS : SYSTEM-TYPE;
-- A global variable containing information about the
-- system in general.

ERROR, FINISHED: BOOLEAN :- FALSE;
-- ERROR is used by START SIMULATION to determine if
-- a certain error message has been printed out. FINISHED
-- is set to TRUE when the simulation is finished, and is
-- FALSE the rest of the time.

-- This function, called by SIMULATE and CREATE SERVER, pulls a character out
-- of the file described by FILE and returns it.

SIMPACK.ADA Page 5

I

-- Note that it expects to read a letter a .. z or A .. Z. If some
-- other visible character is read (such as a number or punctuation mark)
-- the function will not return anything but instead propagate the
-- PROGRAM ERROR exception to the calling unit. PROGRAM ERROR will also
-- be propagated to the calling unit if the end of the fTle is reached before
-- a proper character is read.

function CHARGET (FILE: TEXT IO.FILETYPE) return CHARACTER is
INPUT: CHARACTER :- ASCII.BEL;
END FILE, BAD DATA: EXCEPTION;
begTn
while CHARACTER' POS (INPUT) < 33 loop

if TEXT IO.END OF FILE (FILE) then
raisi ENDFILE;

else
TEXT IO.GET (FILE, INPUT);

end if;
end loop;
if (CHARACTER' POS (INPUT) > 64 and CHARACTER' POS (INPUT) < 91)

or (CHARACTER' POS (INPUT) > 96 and CHARACTER' POS (INPUT) < 123)
then

return INPUT;
else raise BAD-DATA;
end if;
exception
when END FILE ->

PUT-("I tried to read a character but could not find it before");
NEW LINE;
PUT-("I reached the end of the file."); NEW LINE;
raise PROGRAM ERROR;

r when BAD DATA =>
PUT-("An invalid character input has been entered."); NEW LINE;
PUT ("ASCII value of character is"); PUT (CHARACTER'POS (TNPUT));

NEWLINE;
raise PROGRAM-ERROR;

end CHARGET;

-- This function, called by SIMULATE and CREATE-SERVER, gets an array of
-- characters from the text file FILE, converts it into an integer number
-- and returns it. Example: the string "234" is returned as
-- the integer number 234.
-- This function expects to read a number of some kind, and if a visible (
-- i.e. non-whitespace) character that is not in 0 ..9 is read, the exception
-- PROGRAM-ERROR will be propagated to the calling unit. This will also
happen
-- if the end of file is reached before a number is read.
-- This simulation program is designed to use 16-bit arithmetic on a 32-bit
-- machine. Thus, a number larger than 32767 will cause NUMERIC-ERROR to be
-. propagated to the calling environment.

function INTGET (FILE: TEXT IO.FILE TYPE) return INTEGER is
CHAR ARRAY: array (1..80) o? CHARACTER;
MULTTPLIER: INTEGER :- 1;
COUNTER: INTEGER :- 1;
STOP :BOOLEAN :- FALSE;
DUMMY: CHARACTER :- ASCII.BEL;
TEMP: INTEGER;
RETURN VALUE: INTEGER :- 0;
BIGi, 9IG2: INTEGER_32;

SIMPACKADA Page 6

END FILE, CHARACTER INPUT: EXCEPTION;
begTn

while (not (TEXT IO.END OF FILE(FILE))) and
(not (CHARACTER' 'OS-(DUMMY) > 47 and CHARACTER'POS (DUMMY) < 58))
loopI TEXT IO.GET (FILE, DUMMY);
if (CHARACTER' POS (DUMMY) > 32 and CHARACTER' POS (DUMMY) < 48
or CHARACTER' POS (DUMMY) > 57 then

raise CHARACTER-INPUT;
end if;

end loop;

if (not (CHARACTER' POS (DUMMY) > 47 and CHARACTER' POS (DUMMY) < 58))
and TEXT IO.END OF FILE (FILE) then
raise END FILE; -

end if;

CHAR ARRAY (COUNTER) : DUMMY;
COUNTER :- COUNTER + 1;
while not STOP loop

if TEXT IO.END OFLINE (FILE) or TEXTIO.ENDOFFILE (FILE) thenSTOP-:- TRUE;

else5sTEXTIO.GET (FILE, DUMMY);

if TEXT IO.END OF LINE (FILE) or TEXT IO.END OF FILE (FILE) then
STOP;-:- TRUr;

end if;
if CHARACTER'POS (DUMMY) > 47 and CHARACTER'POS (DUMMY) < 58 then

CHAR ARRAY(COUNTER) :- DUMMY;
COUNTER :- COUNTER + 1;
else STOP :- TRUE;
end if;

end if; -- if we can read a character.
end loop;
COUNTER :- COUNTER - 1;

while COUNTER >- 1 loop
TEMP :- (CHARACTER' POS (CHARARRAY (COUNTER))) - 48;
TEMP :- TEMP * MULTIPLIER;
BIGI : INTEGER 32 (RETURN VALUE);
BIG2 :- INTEGER-32 (TEMP);-
if BIG1+BIG2 > 2 ** 15 -1 then

raise NUMERIC-ERROR;
end if;

RETURN VALUE :- RETURN VALUE + TEMP;
if MULTIPLIER < 10000 then

MULTIPLIER :- MULTIPLIER * 10;
elsif COUNTER > I then

raise NUMERICERROR;
end if;
COUNTER :- COUNTER - 1;

end loop;

return RETURN-VALUE;
exception
when CHARACTER INPUT ->

PUT ("I read a character where I expected a number."); NEW LINE;
PUT ("There must be something wrong with the input file.");-NEWLINE;

ISIMPACK.ADA Page 7

I

raise PROGRAM ERROR;
when END FILE ->

PUT-(*I have reached the end of the input file and I could not");
NEW LINE;
PUT-("Flnd an integer value I could accept."); NEW LINE;
raise PROGRAM ERROR;

when NUMERIC ERROR --
PUT ("This simulation package only allows user values of 16 bits.");
NEW LINE;
PUT-("In other words, the maximum value that can be given is 32767.");
NEW LINE;
ra1ie NUMERIC-ERROR;

end INTGET;

-- This function, called by GENERATE ARRRIVAL, HANDLE ARRIVAL, and
-- SCHEDULE DEPARTURE, generates a random variable with WHAT KIND of
-- distribution.
-- in the range LOW .. HIGH. If WHAT KIND is EXPONENTIAL the parameter
-- LOW is used as the mean and HIGH is ignored. If an exception of some kind
-- is raised the function will return zero to the calling unit. Otherwise
-- it will return the random value.

function GENERATE (LOW, HIGH: INTEGER; WHAT-KIND: PROBABILITY_DISTRIBUTION)
return INTEGER is

TEMP: INTEGER;
begin

if WHAT KIND - UNIFORM then
TEMP :- UNIFORM FUNC (LOW, HIGH);

elsif WHAT KIND - EXPONENTIAL then
TEMP :- EXP (LOW);

elsif WHAT KIND - NORMAL then
TEMP :- UNIFORM FUNC (LOW, HIGH);
-- TEMP :- NORM TLOW, HIGH);

else
TEMP :- UNIFORM FUNC (LOW, HIGH);
-- TEMP :- DISCRETEFUNC (LOW, HIGH);

end if;
return TEMP;
exception
when NUMERIC ERROR =>

PUT ("A-numeric error has occurred in generate."); NEW-LINE;
return 0;

when CONSTRAINT ERROR ->
PUT ("A constraint error has occurred in generate. "); NEWLINE;
return 0;

when PROGRAM ERROR ->
PUT ("A-program error has occurred in generate. "); NEW-LINE;
return 0;

when others ->
PUT ("The generate function has failed. "); NEW-LINE;
PUT ("Zero will be returned."); NEW-LINE;
return 0;

end GENERATE;

-- This function, called by HANDLE ARRIVAL, determines which server the
-- requestor REQ should visit next, based on the possible servers that
-- can be reached from SERVER and the probability distribution describing
-- how probable It is that the requestor will visit a given server.

SIMPACKADA Page 8

-- This information is held in a linked list pointed to by the current
-- server's DISTRIBUTION field.

-- The function returns the identification number of the next
-- server to be visited. If an exception is raised the value zero is returned.
-- Note that when the requestors WHERE NEXT field :- 0 it means that the
-- requestor should leave the system nixt. There is no server 0.

-- This function calls RANDOM INT.

function SET-DESTINATION (REQ: REQUESTLINK; SERVER: SERVERLISTTYPE)
return INTEGER is

TEST LIST: DISTRIBUTION LIST;
TEST, SUM, COUNT, ID: INTEGER :- 0;
DESTINATION FOUND: BOOLEAN :- FALSE;
begin
TEST LIST :- SERVER.DISTRIBUTION;
if SERVER.NUM PATHS - 0 then

return 0;
else
TEST :- RANDOM INT (100);
COUNT : 1;

while not DESTINATION FOUND loop
SUM :- SUM + TE3T LIST.PROBABILITY;
if TEST <- SUM thin

ID :- TEST LIST.WHERE TO GO;
DESTINATIONFOUND :- TRUE;

end if;
if not DESTINATION FOUND then

COUNT :- COUNT T 1;
TEST LIST :- TEST LIST.NEXT;

end if;
if COUNT > SERVER.NUM PATHS then

DESTINATION FOUND : TRUE;
ID :- 0;

end if;
end loop;

return ID;
end if;
exception
when others ->

PUT ("SET DESTINATION has failed. Zero will be returned. ");
NEW LINE;-
return 0;

end SET-DESTINATION;

-- This procedure, called by CREATE SERVER, inserts a new element ITEM onto a
-- distribution list pointed to by LIST. This is usually the DISTRIBUTION
-- field of the current server. If the procedure fails then PROGRAM ERROR is
-- propagated to the calling unit. Note that the exception NULL LIST does not
-- propagate an error message. Rather, this exception handles tie special
case
-- of inserting onto an empty list.

procedure DIST INSERT (ITEM, LIST: in out DISTRIBUTION-LIST) is

SIMPACKADA Page 9

I
I

TEMP: DISTRIBUTION LIST :- NULL;
NULL LIST: EXCEPTION;

I begin
TEMP :- LIST;
if TEMP - null then

LIST :- ITEM;
ITEM.NEXT : null;

else
while TEMP.NEXT /- null loop

TEMP :- TEMP.NEXT;
end loop;
TEMP.NEXT : ITEM;
ITEM.NEXT : null;
end if;
exception
when NULL LIST -

LIST-:- ITEM;
ITEM.NEXT :- null;

when others ->
PUT ("DIST INSERT has failed."); NEW-LINE;
raise PROGRAM ERROR;

end DIST-INSERT;

|---- ------------------------

-- This procedure, called by CREATE SERVER, inserts a new server NEWITEM onto

-- the list pointed to by LISTPTR. 5k is set to TRUE by this procedure if theI--insertion is successful, FALSE otherwise.

procedure SERV INSERT (NEWITEM, LISTPTR: in out SERVER LIST TYPE; OK: in out
BOOLEAN) is
TEMP: SERVER LIST TYPE :- null;
COUNT: INTEGER :- 1;
NULLLIST: EXCEPTION;

begin

if LISTPTR - null then
raise NU-LLLIST;

else

TEMP : LISTPTR;
COUNT : 2;
while TEMP.NEXT /- null loop

TEMP :- TEMP.NEXT;
COUNT :- COUNT + 1;

end loop;

TEMP.NEXT :- NEWITEM;
NEWITEM.NEXT := null;
NEWITEMI.SERVER ID :- COUNT;

OK :- TRUE;
end if;
exception
when NULL LIST ->

LISTPTR :- NEWITEM;
NEWITEM.NEXT :- null;

I P
SIMPACK.ADA Page 10

II

NEWITEM.SERVERID :- 1;
OK :- TRUE;

when others ->
PUT ("SERV INSERT failed."); NEW-LINE;
OK :- FALSE;

end SERVINSERT;

-- This function returns a pointer to the ITH server on the list
-- referenced by LISTPTR. If there are fewer than I things on the list
-- a pointer to the last thing is returned. If the list is empty
-- of some other error occurs null will be returned.
-- This function is called by STARTSIMULATION, HANDLE-ARRIVAL and
-- HANDLE-DEPARTURE.

function SERV FINDITH (LISTPTR: SERVER LIST TYPE; I: INTEGER)
return SERVER LISTTYPE is

TEMP : SERVER LIST TYPE;
COUNT : INTEGER :--0;
EMPTY LIST: EXCEPTION;
SHORT LIST: EXCEPTION;

begin
if LISTPTR - null then

raise EMPTY-LIST;
end if;
TEMP : LISTPTR;

I3 COUNT:- 1;

while COUNT < I loop

if TEMP.NEXT - null then
raise SHORT-LIST;

else
TEMP :- TEMP.NEXT;
COUNT : COUNT + 1;

end if;

end loop;

return TEMP;

exception
when EMPTY LIST ->

PUT (wThere are no items on the list."); NEW LINE;
PUT ("Null will be returned."); NEW LINE;
return null;

when SHORT LIST ->
PUT ('wThere are only "); PUT (COUNT);
PUT ("items on the list."); NEW LINE;
PUT ("I will return a pointer to the last item on the list.");

NEW LINE;
return TEMP;

when others ->

PUT ("SERV FINDITH has failed. Null value will be returned."); NEWLINE;
return nuIT;

end SERVFINDITH;

I SIMPACK.ADA Page 11

-- This procedure inserts a new event ITEM onto the event queue pointed
-- to by HEAD. The insertion orders the events on the queue so that the
-- items with the smaller arrival times are closer to the top of the queue,
-- and will therefore be serviced first. In the event of an exception
-- PROGRAM ERROR will be propagated to the calling unit.
-- This procedure is called by SCHEDULEARRIVAL, SCHEDULE-DEPARTURE,
-- and START SIMULATION.

procedure EVENT INSERT (ITEM, HEAD: in out SCHEDULELINK) is
FOUND: BOOLEAN;
TEMPLINKI, TEMPLINK2: SCHEDULELINK;

begin
TEMPLINKI :- HEAD;
If HEAD - null then -- list empty

HEAD :- ITEM;
HEAD.NEXT :- null;

else
TEMPLINKI : HEAD;
TEMPLINK2 :- HEAD.NEXT;
FOUND :- FALSE;
while not FOUND loop

if ITEM.ACTIVATETIME < HEAD.ACTIVATETIME then -- head insert
ITEM.NEXT :- HEAD;
HEAD : ITEM;
FOUND - TRUE;

elsif TEMPLINK2 - null and -- tail insert 1
ITEM.ACTIVATETIME < TEMPLINKI.ACTIVATETIME then

ITEM.NEXT :- TEMPLINKI;
TEMPLINK1 :- ITEM;
FOUND :- TRUE;

elsif TEMPLINK2 - null and
ITEM.ACTIVATETIME>-TEMPLINK1.ACTIVATETIME then -- tail insert 2

ITEM.NEXT :- null;
TEMPLINK1.NEXT :- ITEM;
FOUND :- TRUE;

elsif ITEM.ACTIVATETIME < TEMPLINK2.ACTIVATETIME then -- middle
ITEM.NEXT :- TEMPLINK2;
TEMPLINK1.NEXT :- ITEM;
FOUND :- TRUE;

elsif FOUND - FALSE then -- next node
TEMPLINKI :- TEMPLINK2;
TEMPLINK2 :- TEMPLINK2.NEXT;

end if;
end loop;

end if;
exception
when others ->

PUT ("EVENT INSERT has failed."); NEWLINE;
raise PROGRTAM ERROR;

end EVENT INSERT;

-- This procedure inserts a new requestor ITEM onto the queue pointed
-- to by HEAD. Note that if some kind of exception occurs PROGRAM ERROR
-- will be propagated to the calling environment.
-- This procedure is called by HANDLEARRIVAL and HANDLE DEPARTURE.

SIMPACK.ADA Page 12

procedure INQUEUE (ITEM, HEAD: in out REQUESTLINK) is
FOUND: BOOLEAN;
TEMP: REQUESTLINK;

begin
TEMP :- HEAD;
if HEAD - null then -- list empty

HEAD :- ITEM;
HEAD.NEXT :- null;

else
FOUND :- FALSE;
while not FOUND loop -- insert at rear

if TEMP.NEXT - null then
ITEM.NEXT : null;
TEMP.NEXT : ITEM;
FOUND :- TRUE;

else
TEMP :- TEMP.NEXT;

end if;
end loop;

end if;
exception
when others ->

PUT ("INQUEUE has failed.);NEW LINE;
raise PROGRAMERROR;

end INQUEUE;

-- This function counts the number of objects on the queue (or list)
-- pointed to by HEAD and returns that number.
-- In case of an exception zero is returned.
-- This function is called by SCHEDULEDEPARTURE, HANDLE-ARRIVAL,
-- and HANDLEDEPARTURE.

function QCONTENTS (HEAD: REQUESTLINK) return INTEGER is
COUNT: INTEGER :- 0;
TEMP: REQUESTLINK;

begin
COUNT :- 0;
TEMP := HEAD;
while not (TEMP - null) loop

COUNT :- COUNT + 1;
TEMP :- TEMP.NEXT;

end loop;
return COUNT;
exception
when others ->

PUT ("QCONTENTS has failed. Zero will be returned."); NEW-LINE;
return 0;

end QCONTENTS;

-- Almost the first thing SCHEDULE DEPARTURE does is check to see
-- if it CAN schedule a departure -- if the service time + the current
-- time is greater than the time when the simulation stops (if time is the
-- stop condition for the simulation), it should not schedule a departure.
-- If the program finds that it cannot schedule a departure, it sets a flag
-- on the current server called LAST DEPARTURE, telling itself that the
-- server will be busy with an objec! until the simulation terminates.

SIMPACK.ADA Page 13

-- On the other hand, if the event passes the above test,
-- SCHEDULE DEPARTURE schedules a departure event for the first
.. requestor on the current server's waiting queue. Having done this,
-- it moves the requestor from the current server's waiting queue to the
-- current server's processing queue, where requestors that are being
processed
-- are stored. It tnen updates statistics both for the current server and for
-- the current server's queue. If an exception occurs PROGRAMERROR is
-- propagated to the calling unit.

-- The procedure also checks to see if total queue time has reached MAXINT
-- (32767) if it does, than the simulation is prematurely terminated.
-- This is the only value checked here for this occurrence because
m. this field grew much faster than the other fields during testing.

This procedure is called by HANDLE-ARRIVAL and HANDLEDEPARTURE, and calls
-- GENERATE and EVENT INSERT.

procedure SCHEDULE DEPARTURE is
AST: INTEGER :- 0;
BIGI, BIG2, BIG3: INTEGER 32;
begin

AST :- GENERATE (CURRENT SERVER.ASTLOW, C!IRRENTSERVER.ASTHIGH,
CURRENTSERVER.WHATKIND);

if (SYS.CLOCK+AST < SYS.STOPTIME) or (SYS.CONDITION /- ATIME) then
SYS.ITEM :- new SCHEDULENODE;
SYS.ITEM.CLASS :- DEPART;
SYS.ITEM.ACTIVATETIME :- AST + SYS.CLOCX;
SYS.ITEM.MAX ARRIVALTIME :- AST;
SYS.ITEM.MIN-ARRIVAL TIME :- 0;
SYS.ITEM.WHERE AMI :Z SYS.LAST EVENT.WHEREAMI;
SYS.ITEM.FROMSERVER :- TRUE;
SYS.ITEM.NEXT :- null;

CURRENT SERVER.TOTALAST :- CURRENT SERVER.TOrALAST + AS(;
EVENT-INSERT (SYS.ITEM, SYS.HEAD)(-

elsif not CURRENT SERVER.LAST DEPARTURE then
CURRENT SERVER.LAST DEPARTURE :- TRUE;

CURRENTSERVER.TOTALAST :- CURRENT SERVER.TOTALAST +
e i (SYS.STOPTIME - SYS.CLOCK);

end if;

BIGI :- INTEGER 32 (CURRENT SERVER.WAITQ.TOTALQTIME);
BIG2 :- INTEGER 32 (SYS.CLOýK);
BIG3 :- INTEGER 32 (CURRENT SERVER.WAIT Q.Q PTR.CREATIONTIME);
if BIGI + (BIG27 BIG3) < 2 7* 15 - 1 then -

CURRENT SERVER.WAIT Q.TOTALQTIME :- CURRENT SERVER.WAIT Q.TOfAL QTIME +
else (SYS.CLOCK - CURRENTSERVER.WAIT .Q.QPTR.CREATIONTTME);

CURRENT SERVER.WAIT Q.TOTALQTIME :- 2 ** 15 - 1;
FINISHED :- TRUE;
if not ERROR then
PUT ("The total queue time has just gotten as large as MAXINT."); NEWLINE;
PUT ("The program will be terminated prematurely.");
ERROR :- TRUE;
end if;

end If;
if (SYS.CLOCK - CURRENTSERVER.WAITQ.QPTR.CREATIONTIME) - 0 then

l SIMPACK.ADA Page 14

I
I_

CURRENT SERVER.WAIT Q.ZERO QENTRIES :

end if; CURRENT SERVER.WAITQ.ZERO_QENTRIES + 1;

CURRENT SERVER.CURRENT CONTENTS :-QCONTENTS (CURRENT SERVER.PROCESS Q);
CURRENT-SERVER.NUMBER OF ENTRIES : CURRENT SERVER.NUMBER OF ENTRIES-+ 1;
if CURRINT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then

CURRENT-SERVER.MAXCONTENTS :- CURRENTSERVER.CURRENTCONTENTS;
end if;
exception
when others ->
PUT ("SCHEDULE DEPARTURE has failed. "); NEWLINE;
raise PROGRAM ERROR;
end SCHEDULE-DEPARTURE;

An incredibly trivial procedure. It schedules an arrival
-- at server INDEX, to occur after ARRIVAL time units have
-- elapsed after the current time. If the requestor is departing
-- from a server, FROMSERV is TRUE, else FALSE.
-- This procedure is called by HANDLE-ARRIVAL and calls EVENTINSERT.

procedure SCHEDULE ARRIVAL (INDEX: in INTEGER; ARRIVAL: in INTEGER;
beginFROMSERV: BOOLEAN) is
begin

SYS.ITEM :- new SCHEDULENODE'(ARRIVE,ARRIVAL+SYS.CLOCK,
O,O,INDEX,FROM_SERV,null);

EVENT INSERT (SYS.ITEM, SYS.HEAD);
exception
when others =>

PUT ("SCHEDULE ARRIVAL has failed. "); NEWLINE;
end SCHEDULEARRIVAI;

-o-This procedure handles an arrival when it occurs. The first thingit does is find out which server the arrival event is occurring at and

make it the current server. Next, it checks to see whether the arrival
-- event has just occurred at server 1. If it has, and it has just been
-- generated as opposed to being directed there from another server, the
-- next arrival at server one from outside the system is scheduled.
-- Statistics are then updated. If the current server can process
-- the requestor, SCHEDULE DEPARTURL is called.
-- In case of an exception, PROGRAM ERROR is propagated to the calling unit.
-- This procedure is called by START SIMULATION and calls SERV FINDITH,
-- QCONTENTS, SCHEDULEDEPARTURE, INýUEUE, SETDESTINATION, GENERATE and
-- SCHEDULE-ARRIVAL.

procedure HANDLE ARRIVAL is
REQUESTOR: RE&UESTLINK :- null;
NUM ARRIVE: INTEGER :- 0;

IAT7 INTEGER :- 0;
begin

CURRENT SERVER :- SERV FINDITH (SERV LIST,SYS.LAST EVENT.WHERE AMI);
if SYS.LAST EVENT.WHERE AMI - 1 and Fot SYS.LAST EVENT.FROM SERVER then

if not (ýYS.CONDITION - STARVE and SYS.CLOCK ; SYS.STOPTTME) then

SSIMPACK.ADA Page 15

I
I

IAT :- GENERATE (SYS.IATLOW, SYS.IATHIGH, SYS.DISTRIBUTIONTYPE);
SCHEDULE ARRIVAL (1, IAT, FALSE);

else PUT ("Aborted new scheduled departure."); NEW LINE;end if;
end if;

REQUESTOR :- new REQUESTNODE'(O,SYS.CLOCK,null);
REQUESTOR.WHERE NEXT :- SET DESTINATION (REQUESTOR, CURRENT SERVER);
CURRENT SERVER T- SERV FINDTTH (SERV LIST, SYS.LAST EVENT.WRERE AMI);
INQUEUE-(REQUESTOR, CURRENTSERVER.WAITQ.QPTR);

CURRENT SERVER.WAIT Q.TOTAL QENTRIES :-
CURRENT SERVER.WAIT Q.TOTALQENTRIES + 1;

CURRENT SERVER.WAIT Q.CURRENT QCONTENTS :-
QCONTENTS (CUR0ENTSERVER.WAIT Q.Q-PTR);

if CURRENTSERVER.WAITQ.CURRENTQCONTENTS >
CURRENT SERVER.WAITQ.MAX QCONTENTS then

CURRENTSERVER.WAIT Q.MAXQCONTENTS := -
CURRENTSERVER.WAITQ.CURRENTQCONTENTS;

end if;

if (CURRENTSERVER.CURRENTCONTENTS < CURRENTSERVER.CAPACITY) then
SCHEDULE DEPARTURE;

REQUESTER :- new REQUESTNODE;
REQUESTOR.WHERE NEXT :- CURRENT SERVER.WAIT Q.Q PTR.WHERE NEXT;
REQUESTOR.CREATTONTIME :- CURRENT_SERVER.WAITQ.QPTR.CREATIONTIME;
REQUESTOR.NEXT := null;

INQUEUE (REQUESTOR, CURRENT SERVER.PROCESS Q);
CURRENT SERVER.WAIT Q.QPTR :- CURRENT SERVER.WAIT Q.QPTR.NEXT;

CURRENTSERVER.CURRENT CONTENTS :- - -
QCONTENTS (CURRENT SERVER.PROCESSQ);

if CURRENT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then
CURRENTfSERVER.MAXCONTENTS :- CURRENTSEýVER.CURRENT.CONTENTS;

end if;

CURRENT SERVER.WAIT Q.CURREIT QCONTENTS := _

QCONTENTS (CURRENT SERVER.WAITQ.Q_PTR);
-- remove from queue.

else -- if the server is busy.
CURRENT SERVER.REQUESTORS WAITING :

QCONTENTS-(CURRENTSERVER.WAITQ.QPTR);

3 end if; -- if server not busy
exception
when others =>

PUT ("HANDLE ARRIVAL has failed."); NEW LINE;
raise PROGRAM ERROR;

end HANDLE ARRIVALT

|---- ------------------------
This procedure handles the departure of requestors

-- from a server. The first thing it does is to find out where
-- the departure event is supposed to occur, and make that the current
-- server. Having done this, it kicks the first requestor on the "processing"
-- queue off and updates all statistics associated with this event. Next,
-- if there are any requestors on the queue waiting to be processed it calls
-- SCHEDULE DEPARTURE to pull one off the waiting queue and start processing
-- It. In !he event of an exception PROGRAM-ERROR will be propagated to the

SSIMPACK.ADA Page 16

-- calling unit.
-- This procedure is called by START SIMULATION, and calls SERVFINDITH,
-- QCONTENTS, SCHEDULE-DEPARTURE, anU INQUEUE.

procedure HANDLE DEPARTURE is
REQUESTOR: RE&UESTLINK :- null;
NUM ARRIVE: INTEGER :- 0;
DUMRY: INTEGER; -- UNNECESSARY IN FINAL PRODUCT.
HUGEI, HUGE2, HUGE3: INTEGER 32;

begin

CURRENT SERVER :- SERV FINDITH (SERVLIST, SYS.LAST EVENT.WHERE-AMI);
DUMMY :-; QCONTENTS (CURRENT-SERVER.WA-ITQ.QPTR);

if CURRENT SERVER.PROCESS Q.WHERE NEXT /- 0 then
SCHEDULE-ARRIVAL (CURRENT SERVER.PROCESS Q.WHERENEXT,O, TRUE);

else
SYS.REQUESTS PROCESSED :- SYS.REQUESTSPROCESSED + 1;

end if;

CURRENT -SERVER.PROCESS_-Q :- CURRENT SERVER.PROCESS Q.NEXT;
CURRENTfSERVER.CURRENTCONTENTS :- ýCONTENTS (CURRENTSERVER.PROCESSQ);

-- This probably won't happen here, because we are removing, and a shrinkage
-- will not exceed the maximum. RECOMMEND REMOVAL.

if CURRENT SERVER.CURRENT CONTENTS > CURRENT SERVER.MAX CONTENTS then
CURRENTSERVER.MAX CONTENTS :- CURRENTSERVER.CURRENT CONTENTS;

end if;

-- END REMOVAL.

if CURRENT SERVER.REQUESTORSWAITING > 0 then
SCRHEDULE DEPARTURE;
REQUESTOR :- new REQUESTNODE;

REQUESTOR.WHERE NEXT :- CURRENT SERVER.WAIT Q.Q PTR.WHERE NEXT;
REQUESTOR.CREATTONTIME :- CURRENT SERVER.WAI_._T.RXINIE
REQUESTOR.NEXT :- null;ATQ. RCETITME

INQUEUE (REQUESTOR, CURRENT SERVER.PROCESSQ);
CURRENT SERVER.CURRENT CONTENTS :-

QCONTENTS (CURRENT SERVER.PROCESS Q);
if CURRENT SERVER.CURRENT ZONTENTS > CURRENT SERVER.MAX CONTENTS then

CURRENTfSERVER.MAX CONTENTS :- CURRENTSERVER.CURRENT CONTENTS;
end if;

CURRENT SERVER.WAIT Q.Q PTR :- CURRENT SERVER.WAITQ.Q_PTR.NEXT;
CURRENT-SERVER.WAIT-Q.CURRENT QCONTENT3 :-

QCOFWTENTS (CUWRENTSERVER.WAIT-Q.Q-PTR);
-- remove from queue.

CURRENTSERVER.REQUESTORS -WAITING:

end if-,QCONTENTS (CURRENT SERVER.WAITQ.QPTR);

exception
when others *

PUT ("HANDLE DEPARTURE has failed. "); NEWLINE;
raise PROGRAR ERROR;

end HANDLE-DEPARTURE;

SIMPACKADA Page 17

.- This procedure puts the first arrival event on the queue, and
-- sets the random number generator for the system, telling it how
-- often it should generate requestors. LOW and HIGH specify a range
-- of random integers and DISTRIBUTION how the numbers should be
-- distributed. Of course, if the distribution is EXPONENTIAL, HIGH has
-- no meaning and LOW refers to the mean value. In event of an exception,
-- PROGRAM-ERROR is propagated to the calling unit.
-- This procedure is called by SIMULATE and calls GENERATE.

procedure GENERATE ARRIVAL (LOW, HIGH : in INTEGER;
DISTRIBUTION: in PROBABILITY DISTRIBUTION) is

START: INTEGER :- 0;
LOCALLOW,LOCALHIGH:INTEGER; -- LOCAL low and high values. RENAME!
begin
if LOW < 0 or HIGH <- 0 then
raise CONSTRAINT-ERROR;
end if;
if LOW > HIGH then

PUT ("Minimum arrival time is greater than maximum arrival time.");
NEW LINE;
PUT-("We will use the lower of the two values as the minimum"); NEW LINE;
PUT ("arrival time and the higher of the two values as the maximum.-");
NEW LINE;
LOCAL LOW : HIGH;
LOCALHIGH :- LOW;

else
LOCAL LOW :- LOW;
LOCAL HIGH :- HIGH;

end if;

if DISTRIBUTION - EXPONENTIAL then
START : GENERATE (LOCAL-LOW, LOCAL-HIGH, EXPONENTIAL);
else
START :- GENERATE (0, LOCAL-HIGH, UNIFORM);
end if;

SYS.ITEM :- new SCHEOULENODE'(ARRIVE,START,LOCALHIGH,LOCALLOW,I,FALSE~null);
EVENTINSERT (SYS.ITEM, SYS.HEAD);

-- start simulation with initial arrival event.'
SYS.ARRIVAL GENERATED :- TRUE;

exception
when CONSTRAINT ERROR ->

PUT ("Minimum arrival time must be greater than or equal to"); NEWLINE;
PUT ("zero and maximum arrival time must be greater than zero.");
NEW LINE;
PUT-("GENERATE ARRIVAL procedure failed."); NEWLINE;
raise PROGRAM-ERROR;

when others ->
PUT ("GENERATE ARRIVAL procedure has failed.");
raise PROGRAM ERROR;

end GENERATEARRIVAL;

-- This procedure creates a server, specifying the minimum service time,
-- the maximum service time, and the maximum capacity of the server.
-- Having done this, it inserts the server onto SERVLIST, which is

SIMPACK.ADA Page 18

-- a global variable and a SIDE EFFECT. Note that this server must read
-- INPUT FILE to get much of its data. This file (named SIM.DAT) must be in
-- the current working directory.
-- in event of an exception, PROGRAMERROR is propagated to the calling
-- environment.
-- CREATE SERVER will also check various data to see if it is accurate or not.
-- CREATE-SERVER will fail under the following conditions:
-- 1. If Zapacity is less than one for any server.
-- 2. If the character specifying the distribution is not 'u', 'U', 'e'

-- or 'e'.
-- 3. If any of the associated service times (minimum, maximum, or in
-- the case of EXPONENTIAL distribution mean, which is stored in the
-- minimum field ASTLOW) is less than 1.
-- 4. If the sum of the probabilities is greater than 100.

-- Note that if the minimum value is greater than the maximum value, they
-- will be flipped.

-- This procedure is called by SIMULATE and calls CHARGET, INTGET, DIST-INSERT
-- and SERV INSERT.

procedure CREATE SERVER (HIGHEST SERVER, SERVER COUNT: out INTEGER;
INPUT_FTLE: in TEXTIOTFILETYPE) is

LOW, HIGH, CAPACITY: INTEGER :- -9000;
COUNTER: INTEGER;
NEWITEF4: SERVER LIST TYPE;
TEMP: DISTRIBUTTON LTST;
WHAT KIND: PROBABIrITYDISTRIBUTION;
ANSWER: CHARACTER :- 'a';
LOCAL ASTLOW, LOCAL ASTHIGH: INTEGER; -- Local ASTLOW and ASTHIGH.
TOTAL PROBABILITY: TNTEGER :- 0;
begin-
if SYS.HIGHEST SERVER 0 then

SYS.HIGHEST-SERVER :- 1;
end if;
while ANSWER /- 'u' and ANSWER /- 'U' and ANSWER /- 'e' and ANSWER I- 'E' loop

ANSWER :- CHARGET (INPUTFILE);
end loop;
if ANSWER - 'u' or ANSWER - 'U' then

WHAT KIND :- UNIFORM;
else WHAT KIND :- EXPONENTIAL;
end if;

if WHAT KIND - EXPONENTIAL then
LOW :Z INTGET (INPUTFILE);
if LOW < 1 then

PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
raiie PROGRAM-ERROR;

end if;
HIGH :- 2 ** 15 - 1;

else
LOW :- INTGET (INPUTFILE);
if LOW < 1 then

PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
ralie PROGRAMERROR;

end if;
HIGH :- INTGET (INPUTFILE);

SIMPACKADA Page 19

if HIGH < 1 then
PUT ("Associated service times of less than one are not permitted.");
NEW LINE;
raise PROGRAM-ERROR;

end if;
end if;

CAPACITY z- INTGET (INPUTFILE);
if CAPACITY < 1 then

PUT ("Capacity mL.st be greater than zero."); NEW LINE;
raise PROGRAMERROR;

end If;
if LOW > HIGH then

PUT ("The entered minimum service time is greater than the maximum.");
NEW LINE;
PUT-("I shall use the lower of the two values as the minimum and ");
NEW LINE;
PUT-("the other as the maximum service time."); NEW LINE;
LOCAL ASTLOW :- HIGH;
LOCAL-ASTHIGH :- LOW;

else
LOCAL ASTLOW : LOW;
LOCACASTHIGH :- HIGH;

end if;

NEWITEM :- new SERVER TYPE;

NEWITEM.NUM PATHS :- INTGET (INPUT FILE);
-- PUT ("Number of paths - "); PUT-(NEWITEM.NUM-PATHS); NEW-LINE;
if NEWITEM.NUM PATHS < 0 then

PUT ("The nimber of paths must be at least zero."); NEW-LINE;
raise PROGRAMERROR;

end if;
if NEWITEM.NUM PATHS - 0 then

TEMP :- new-DISTRIBUTIONRECORD;
TEMP.WHERE TO GO :- 0;
TEMP.PROBABILTTY : 100;
DIST INSERT (TEMP, NEWITEM.DISTRIBUTION);

else
TOTAL PROBABILITY :- 101;
while-TOTAL PROBABILITY > 100 loop

TOTAL PRUBABILITY - 0;
for COUNTER in 1 NEWITEM.NUM PATHS loop

TEMP :- new DISTRIBUTION REOORD;
TEMP.WHERETOGO :- INTGET (INPUTFILE);
if TEMP.WHERECTO GO > SYS.HIGHEST SERVER then

SYS.HIGHEST SERVER :- TEMP.WHERETOGO;
end if;
TEMP.PROBABILITY :- 101;

while TEMP.PROBABILITY > 100 or TEMP.PROBABILITY < 0 loop
TEMP.PROBABILITY :- INTGET (INPUT FILE);

PUT ("probability - "); PUT (TEMP.PROBABILITY); NEW-LINE;
end loop;

DIST INSERT (TEMP, NEWITEM.DISTRIBUTION);
TOTAL PROBABILITY :- TOTAL PROBABILITY + TEMP.PROBABILITY;

end loop;

if TOTAL PROBABILITY > 100 then
PUT-("The sum of all the probabilities for a single server");

SIMPACKADA Page 20

NEW LINE;
PUT-("Should not exceed 100. I'm sorry, but the simulation will");
NEW LINE;
PUT-("have to be aborted."); NEW-LINE;
raise PROGRAM-ERROR;

end if;
end loop; -- of while loop.

end if; -- of if HUMPATHS - 0.

NEWITEM.WHAT KIND :- WHATKIND;
NEWITEM.ASTLOW :- LOCAL ASTLOW;
NEWITEM.ASTHIGH :- LOCAL ASTHIGH;
NEWITEM.CAPACITY = CAPACITY;

NEWITEM.NUMBEROFENTRIES :- 0;

NEWITEM.UTILIZATION :- 0.0;
NEWITEM.MAX CONTENTS = 0;
NEWITEM.CURRENT CONTENTS :- 0;
NEWITEM.AVERAGE-CONTENTS :- 0.0;
NEWITEM.REQUESTORS WAITING :- 0;
NEWITEM.AVERAGE TIRE PER ENTRY :- 0.0;
NEWITEM.LAST DEPARTURE :; FALSE;
NEWITEM.TOTALAST :- 0;

NEWITEM.WAIT Q.Q PTR :- null;
NEWITE4.WAIT-Q.TOTAL QENTRIES :- 0;
NEWITEM.WAIT-Q.MAX QCONTENTS :- 0;
NEWITEM.WAIT-Q.CURRENT QCONTENTS = 0;
NEWITEM.WAITfQ.AVERAGE-QCONTENTS = 0.0;
NEWITEM.WAIT7Q.ZERO QENTRIES :- 0;
NEWITEM.WAITfQ.AVERXGE QTIME : 0.0;
NEWITEM.WAIT Q.TOTAL QTIME :- 0;

NEWITEM.WAIT-Q.TOTAL-QCONTENTS :- 0;
SERVINSERT TNEWITEMT SERVLIST, SYS.SERVERCREATED); -- POSSIBLE BAD MOVE

-- using SYS.SERVERCREATED.

if SYS.SERVER CREATED then
CURRENT SERVER :- NEWITEM;

end if;

SYS.SERVER COUNT = SYS.SERVER COUNT + 1;
SERVER COUNT :- SYS.SERVER COUNT; -- parameter assignments.
HIGHEST SERVER :- SYS.HIGHEST_SERVER;
exception
when others ->

PUT ("CREATE SERVER procedure has failed."); NEWLINE;
raise PROGRAR ERROR;

end CREATE-SERVER;

-- This procedure prints out the statistics of interest to a user.3 .it may only be used after a simulation is run.

-- This procedure is called by SIMULATE.
procedure PRINT STATS is
NO SIMULATION :-EXCEPTION;
begin
if not SYS.SIMULATION RUN then

raise NO-SIMULATION;
end if;

SIMPACK.ADA Page 21

I
I

PUT ("Simulation Stopped at Time: "); PUT (SYS.CLOCK);3 NEWLINE;

CURRENT SERVER :- SERV LIST;
PUT (SYS.SERVER COUNT); PUT (" servers in this run."); NEW LINE;
PUT ("SERVER CAPACITY ENTRIES AVG. TIME MAX CURRENT AVG.
UTIL. ");
NEW LINE;
PUT-(,, PER ENTRY \
NEW LINE;
PUT-(" CONTENTS
NEW LINE;
for-COUNT in 1..SYS.SERVER COUNT loop

PUT (CURRENT SERVER.SERVER ID,2);
PUT (CURRENT-SERVER.CAPACITY,12);
PUT (CURRENT-SERVER.NUMBER OF ENTRIES,9);
PUT (CURRENT-SERVER.AVERAGE TIME PER ENTRY,1O);
PUT (CURRENT-SERVER.MAX CONTENTSB);-
PUT (CURRENT-SERVER.CURRENT CONTENTS,7);
PUT (CURRENT-SERVER.AVERAGE-CONTENTS,g);
PUT (CURRENT-SERVER.UTILIZATION*IO0.O,9); PUT (" %"); NEW LINE;
CURRENT SERVIR :- CURRENTSERVER.NEXT;

end loop;

CURRENT SERVER :- SERV LIST;
NEW-LINE; NEWLINE; NEW-LINE;

PUT ("QUEUE ENTRIES O-ENTRIES AVG. TIME MAX. CURRENT AVG.");
NEW LINE;
PUT-(" CONTENTS
NEWLINE;
for COUNT in 1..SYS.SERVER COUNT loop
PUT (CURRENT SERVER.SERVER-IO,2);
PUT (CURRENT-SERVER.WAIT Q:TOTAL QENTRIES,12);
PUT (CURRENT-SERVER.WAIT-Q.ZERO QENTRIES,12);
PUT (CURRENT-SERVER.WAIT-Q.AVERAGE QTIME,9);
PUT (CURRENT-SERVER.WAITýQ.MAXQCONTENTS,1O);
PUT (CURRENT-SERVER.WAIT Q.CURRENT QCONTENTS,3);
PUT (CURRENTfSERVER.WAIT-Q.AVERAGENQCONTENTS,9);

NEW LINE;
CURRENT SERVER :- CURRENT SERVER.NEXT;
end loop;
NEWLINE; NEW-LINE; NEWLINE; NEW-LINE;

3 exception
when NO SIMULATION ->

PUT ("You must run a simulation before I can print out any statistics.");
NEW LINE;
PUT-("PRINTSTATS procedure failed."); NEWLINE;

when others ->
PUT ("PRINT STATS procedure failed."); NEW-LINE;3 end PRINTSTATS;-

-- This procedure starts the simulation, generating the termination event
-- and the first sample event. After this it enters a loop and processes
-- every event as it comes off the event queue until FINISHED :- TRUE.
-- To do this it will have to call HANDLE ARRIVAL and HANDLE DEPARTURE
-- to handle the ARRIVAL and DEPARTURE events. After FINISHED is TRUE
m- the procedure calculates all the means from data gathered during the
-- simulation, and also factors in the waiting times of the requestors still

l SIMPACK.ADA Page 22

I

-- on the queues. Server utilization is also derived at this time.
-- There are a number of exceptions that will prevent this program from
working.
-- BAD WORKSPACE is raised if a simulation has just been run and the data
-- structures are still "dirty" from the run. NO ARRIVAL is raised
m. if no Initial arrival event has been generated- and NO SERVER is raised
-- if there is no server to do processing. In all, There are 5 conditions
-- that must occur for this procedure to work:
-- 1. The necessary data structures must exist and they must be "clean."
m. 2. An initial arrival event must be on the event queue.
-- 3. At least one server must be on the server list.
-- 4. Time for simulation must te greater than zero, if the ending condition
-- is either STARVE or TIME. If it isn't the number of requestors that must
-- leave the system before termination must be greater than zero.
-- 5. There must be the RIGHT number of servers. An exception will be
generated

-- if, for instance, a user creates pointers to seven servers but only
m -- generates four.

-- This procedure is called by SIMULATE and calls HANDLEARRIVAL,
-- HANDLE-DEPARTURE, SERVFINDITH and EVENTINSERT.

procedure START-SIMULATION (DISTRIBUTION: in PROBABILITYDISTRIBUTION;
IATLOW, IATHIGH: in INTEGER;
STOP CONDITION: in STOPTYPE;
STOPPER: in INTEGER) isU TIME: INTEGER;

REQUESTOR: REQUESTLINK :- null;
SINTERVAL: INTEGER := 0; -- determines the interval at which samples are

-- taken.
HUGEl, HUGE2, HUGE3 : INTEGER 32;
NO SERVER, NO ARRIVAL, BAD WORKSPACE, NOTENOUGH SERVERS: EXCEPTION;
NOT ENOUGHREýUESTORS: EXCEPTION;

begin

SYS.DISTRIBUTION TYPE : DISTRIBUTION;

SYS.CONDITION :-STOPCONDITION;

if SYS.CONDITION I= REQUESTORS then
SYS.STOPTIME := STOPPER;

else SYS.TOTALREQUESTORS :- STOPPER;end if;

3 if SYS.SIMULATION RUN then
raise BAD WORKSPACE;

elsif not SYS.ARRIVAL GENERATED then
raise NO ARRIVAL; -

elsif not SYS.SERVER CREATED then
raise NO SERVER;

elsif SYS.SERVER COUNT < SYS.HIGHESTSERVER then

else raise NOT ENOUGH SERVERS;

SYS.IATLOW -IATLOW;
SYS.IATHIGH : IATHIGH;

if SYS.CONDITION - ATIME then
-- Schedule simulation termination. HASTA LA VISTA]
SYS.ITEM :- new SCHEDULENODE'(STOPSIMULATION,SYS.STOPTIME,O,OO,FALSE,null);
EVENT-INSERT (SYS.ITEM, SYS.HEAD);

m SIMPACKADA Page 23

I
U

-- master scheduler stop simulation
end if;

-- Schedule the first sampling event.
if SYS.CONDITION /- REQUESTORS then

SINTERVAL :- GENERATE ((SYS.STOPTIME / 20), (SYS.STOPTIME / 10), UNIFORM);
else

SINTERVAL :- GENERATE (((SYS.IATLOW * SYS.TOTAL REQUESTORS) / 20),
((SYS.IATLOW * SYS.TOTALREQUESTOR3) / 10), UNIFORM);i end if;

if SINTERVAL < 1 then
SINTERVAL :- 1;

end if;
-- PUT ("SINTERVAL - "); PUT (SINTERVAL); NEWLINE;

SYS.ITEM :- new SCHEDULENODE;
SYS.ITEM.CLASS :- SAMPLE;
SYS.ITEM.ACTIVATETIME :- SINTERVAL;
SYS.ITEM.MAX ARRIVAL TIME : 0;
SYS.ITEM.MIN-ARRIVAL-TIME :- 0;
SYS.ITEM.FROR SERVER-:- FALSE;3 SYS.ITEM.NEXT :- null;

EVENTINSERT (SYS.ITEM, SYS.HEAD);

I CURRENT-SERVER :- SERVFINDITH (SERVLIST,1);

while not FINISHED loop
if SYS.HEAD /- null and SYS.CLOCK < SYS.HEAD.ACTIVATETIME
then

SYS.CLOCK : SYS.HEAD.ACTIVATETIME;
end if;
if SYS.REQUESTS PROCESSED >- SYS.TOTALREQUESTORS-1 and

SYS.CONDITION - REQUESTORS then
SYS.STOPTIME :- SYS.LASTEVENT.ACTIVATETIME; -- May be wrong.
FINISHED :- TRUE;

elsif SYS.HEAD.CLASS - ARRIVE then
SYS.LAST EVENT :- SYS.HEAD;

SYS.HEAD :- SYS.HEAD.NEXT; -- remove top node
HANDLE ARRIVAL;

elsif SYS.HEAD.CLASS - DEPART then
SYS.LASTUEVENT :- SYS.HEAD;

SYS.HEAD :- SYS.HEAD.NEXT;
HANDLE DEPARTURE;

elsif SY§.HEAD.CLASS - STOPSIMULATION then
SYS.STOPTIME :- SYS.HEAD.ACTIVATETIME;
SYS.HEAD :- SYS.HEAD.NEXT;
FINISHED : TRUE;

elsif SYS.HEAD.CLASS - SAMPLE then
SYS.HEAD :- SYS.HEAD.NEXT;

if SYS.CLOCK > SYS.STOPTIME and SYS.CONDITION - STARVE then
FINISHED : TRUE;
SYS.ITEM htSYS.HEAD;

This next loop determines whether the system has starved
or not. What we do is check every item on the event queue
and if there are no arrivals or departures on the queue

-- then the system has starved and the simulation should
-- terminate.
while SYS.ITEM /- null loop

SSIMPACK.ADA Page 24

if SYS.ITEM.CLASS - ARRIVE or SYS.ITEJ4.CLASS =DEPART
then

FINISHED :- FALSE;
end if;
SYS.ITEM :- SYS.ITEM.NEXT;

end loop;
end if;
if not FINISHED then
for COUNTER in 1. .SYS.SERVER COUNT loop
CURRENTSERVER :- SERV FINDITH (SERV LIST, COUNTER);
CURRENT SERVER.WAITQ.TOTAL -QCONTENTS-:-

CURRENT SERVER:WAIT Q.TOTAL QCONTENTS +
CURRENT-SERVER.WAIT Q.CURRENTQCONTENTS;

end loop;

SYS.SAI4PLES :- SYS.SAMPLES + 1;

SYS.ITEt4 :- new SCHEDULENODE'
(SAMPLE,SYS.CLOCK+SINTERVAL,O,O,O,FALSE.null);

EVENT-INSERT (SYS.ITEM, SYS.HEAD);

end if; -- if we are not finished in sample.
end if; -- of the outermost if.

end loop;

SYS.STOPTIME :- SYS.CLOCK;
for COUNTER in 1. .SYS.SERVERCOUNT loop

CURRENTSERVER :- SERVFINDITH (SERVLIST, COUNTER);

if SYS.SAI4PLES > 0 then
CURRENTSERVER.WAITQ.AVERAGE QCONTENTS :- FLOAT

(rURRENT SERVER.WAITQ.TOTALQCONTENTS)/
FLOAT (SYS.SAt4PLES);-

else
CURRENTSERVER.WAIT Q.AVERAGEQCONTENTS :- 0.0;
end if;-

REQUESTOR :- CURRENT SERVER.WAITQ.Q_PTR;
while REQUESTOR /- nUll loop

HUGEl :' INTEGER -32 (CURRENT SERVER.WAITQ.TOTALQTINE);
HUGE2 :=INTEGER - 2 (SYS.CLOCK);
HUGE3 :=INTEGER 32 (REQUESTOR.CREATIONTIME);
if HUGE1 + (HUGE7 - HUGE3) < 2 ** 15 -1 then

CURRENTSERVER.WAITQ.TOTAL-QTIME :
CURRENT SERVER.WAIT Q.TOTAL QTIME +
(SYS.CLOtK - REQUESTUR.CREATTONTIME);

REQUESTOR :- REQUESTOR.NEXT;
elsif not ERROR then

PUT ("The time in queue has reached MAXINT."); NEW LINE;
CURRENT SERVER.WAITQ.TOTAL-QTIME :=2 **15 - 1;
REQUESTUR :- null;
ERROR :- TRUE;

else
CURRENT SERVER. WAIT Q.TOTAL_QTIME :-2 **15 -1;
ERROR :; TRUE;
REQUESTOR :- null;

end if;

end loop;

SIMPACK ADA Page 25

l
I

if CURRENT SERVER.WAIT Q.TOTAL QENTRIES > 0 then
CURRENT SERVER.WAIT Q.AVERAGE QTIME :

FLOAT (CURRENT SERVER.WAIT Q.TOTAL QTIME) /
FLOAT (CURRENT SERVER.WAIT-Q.TOTAL-QENTRIES);

else
CURRENT SERVER.WAIT Q.AVERAGEQTIME :- 0.0;
end if;-
if CURRENT SERVER.NUMBER OF ENTRIES > 1 then
CURRENTSERVER.NUMBER OF-ENTRIES :- CURRENTSERVER.NUMBEROFENTRIES -

CURRENT SERVER.CURRENT CONTENTS;
CURRENTSERVER.AVERAGE TIME PER ENTRY :- FLOAT (CURRENT SERVER.TOTALAST) /

_.. . .- FLOAT(CURRENTSERVER.NUMBEROFENTRIES);
else
CURRENT SERVER.AVERAGE TIME PER ENTRY :- 0.0;U -I

end if;-
CURRENTSERVER.UTILIZATION :- CURRENT SERVER.AVERAGE TIME PER ENTRY *

FLOAT (CURRENT SERVER.NUMBER OF-ENTRIES) /
FLOAT (CURRENT-SERVER.CAPACITY)-/
FLOAT (SYS.STOPTIME);

CURRENT SERVER.AVERAGE CONTENTS :- CURRENT SERVER.UTILIZATION *

n lp FLOAT (CURRENTSERVER.CAPACITY);U ~end loop;-

SYS.SIMULATION RUN :- TRUE;
end if; -- of Tf nothing wrong.
exception
when STORAGE ERROR *>

PUT ("Storage error exception in STARTSIMULATION"); NEWLINE;
when PROGRAMERROR ->

PUT ("Program error exception in STARTSIMULATION"); NEWLINE;
when NO SERVER ->

PUT-("You must generate at least one server with CREATESERVER");
NEW LINE;
PUT ("before you can run a simulation."); NEW LINE;
PUT ("START SIMULATION procedure failed. "); NEWLINE;

when NUMERIC ERROR =>
PUT ("Numeric error occurred in STARTSIMULATION."); NEWLINE;

when NO ARRIVAL -=
PUT ("You must generate the first arrival with GENERATEARRIVAL");
NEW LINE;
PUT-("before you can run a simulation."); NEW LINE;
PUT ("START SIMULATION procedure failed. "); NEWLINE;

when BAD WORKSPACE =>
PUT ("The data structures are still 'dirty' from the last run.");
NEWLINE;

PUT ("I dare not run again until they have been cleaned up. ");
NEW LINE;
PUT ("START SIMULATION procedure failed. "); NEWLINE;

when CONSTRAINT ERROR ->
PUT ("Time-must be greater than zero."); NEW LINE;
PUT ("START SIMULATION procedure failed."); NEW LINE;

when NOT ENOUGH SERVERS ->
PUT-("You Wave created pointers to "); PUT (SYS.HIGHESTSERVER);
NEW LINE;
PUT-("servers but created only "); PUT (SYS.SERVERCOUNT);
if SYS.SERVER COUNT - 1 then

PUT (" server.");
else PUT (" servers.");
end if;

SSIMPACK.ADA Page 26

I

NEW LINE;
PUT-("STARTSIMULATION procedure failed.");

when others ->
PUT ("START SIMULATION procedure failed. "); NEW LINE;

end START-SIMULATION;
|---- ---------

This procedure resets the simulation package so that it will run

again.

-- It is called by SIMULATE.

procedure RESET is
begin
FINISHED :- FALSE;
ERROR :- FALSE;
SYS.TOTAL REQUESTORS :- 0;
SYS.REQUESTS PROCESSED : 0;
SYS.DISTRIBUTION TYPE UNIFORM;
SYS.ARRIVAL GENERATED :- FALSE;
SYS.SERVER tREATED := FALSE;
SYS.SIMULATION RUN :- FALSE;
CURRENT SERVER :- null;
SERV LIST :- null;
SYS.RIGHEST SERVER :- 0;
SYS.SERVER COUNT :- 0;
SYS.SAMPLEf :- 0;
SY•.CLOCK :- 0;
SYS.STOPTIME :- 0;
SYS.ITEM :- null;
SYS.HEAD :- null;

3 end RESET;

3 begin -- SIMPACK initialization code.

RESET;

3 end SIMPACK;

I
i
!
I
!
U SIMPACK.ADA Page 27

